Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 103 - 124, 01.03.2023
https://doi.org/10.18400/tjce.1237663

Öz

Kaynakça

  • Graybeal BA. Flexural behavior of an ultrahigh-performance concrete I-girder. J Bridge Eng 2008;13(6):602-10. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(602).
  • Turker K, Hasgul U, Birol T, Yavas A, Yazici H. Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams. Compos Struct 2019;229,111400.https://doi.org/10.1016/j.compstruct.2019.111400.
  • Yoo DY, Kang ST, Lee JH, Yoon YS. Effect of shrinkage reducing admixture on tensile and flexural behaviors of UHPFRC considering fiber distribution characteristics. Cem Concr Res 2013;54:180-190. https://doi.org/10.1016/j.cemconres.2013.09.006.
  • Kusumawardaningsih Y, Fehling E, Ismail M, Aboubakr AAM. Tensile strength behavior of UHPC and UHPFRC. Procedia Eng 2015;125:1081-1086. https://doi.org/10.1016/j.proeng.2015.11.166.
  • ACI PRC-239-18. Ultra-high-performance concrete: An emerging technology report. American Concrete Institute, Farmington Hills, MI, USA, 2018.
  • Yavas A, Birol T, Turker K, Hasgul U, Yazici H. Improvement of flexural performance of UHPFRC with hybrid steel fiber. Tech J 2020;31(6):10379-10397. https://doi.org/10.18400/tekderg.485565.
  • Yavas A, Hasgul U, Turker K, Birol T. Effective fiber type investigation on the shear behavior of ultrahigh-performance fiber-reinforced concrete beams. Adv Struc Eng 2019;22(7):1591-1605. https://doi.org/10.1177/1369433218820788.
  • Park JJ, Kang ST, Koh KT, Kim SW. Influence of the Ingredients on the Compressive Strength of UHPC as A Fundamental Study to Optimize the Mixing Proportion. In Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, 5-7 March 2008:105–112.
  • Yoo DY, Lee JH, Yoon YS. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Compos Struct 2013;106:742-753. https://doi.org/10.1016/j.compstruct.2013.07.033.
  • Meng W, Valipour M, Khayat KH. Optimization and performance of cost-effective ultra-high performance concrete. Mater Struct 2017;50:1-16. https://doi.org/10.1617/s11527-016-0896-3
  • Banthia N, Majdzadeh F, Wu J, Bindiganavile V. Fiber synergy in hybrid fiber reinforced concrete (HyFRC) in flexure and direct shear. Cem Concr Compos 2014;48:91-7. https://doi.org/10.1016/j.cemconcomp.2013.10.018.
  • Yoo DY, Banthia N, Yoon YS. Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Eng Struct 2016;111:246-262. https://doi.org/10.1016/j.engstruct.2015.12.003.
  • Hasgul U, Turker K, Birol T, Yavas A. Flexural behavior of ultra‐high‐performance fiber reinforced concrete beams with low and high reinforcement ratios. Struct Conc 2018;19(6):1577-1590. https://doi.org/10.1002/suco.201700089.
  • Turker K, Birol T, Yavas A, Hasgul U. Effective steel fiber type investigation on ultra high performance fiber reinforced concrete beams. Afyon Kocatepe Univ J Sci Eng 2016;16: 776-785 (in Turkish). https://doi.org/10.5578/fmbd.39342.
  • Baby F, Marchand P, Toutlemonde F. Shear behavior of ultra high performance fiber-reinforced concrete beams. I: experimental investigation. J Struct Eng 2014;140(5). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000907.
  • El-Dieb AS, El-Maaddawy TA, Al-Rawashdah O. Shear behavior of ultra-high-strength steel fiberreinforced self-compacting concrete beams. In: Proceedings of the construction materials and structures (eds SO Ekolu, M Dundu, X Gao), Johannesburg, South Africa, 24–26 November 2014:972–979.
  • Qi JN, Ma ZJ, Wang JQ, Liu TX. Post-cracking shear strength and deformability of HSS-UHPFRC beams. Struct Conc 2016;17(6):1033-1046. https://doi.org/10.1002/suco.201500191.
  • Voo YL, Poon WK, Foster SJ. Shear strength of steel fiber-reinforced ultra high-performance concrete beams without stirrups. J Struct Eng 2010;136(11):1393-1400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234.
  • Ngo TT, Park JK, Pyo S, Kim DJ. Shear resistance of ultra-high-performance fiber-reinforced concrete. Constr Build Mater 2017;151:246-257. https://doi.org/10.1016/j.conbuildmat.2017.06.079.
  • Lim WY, Hong SG. Shear tests for ultra-high performance fiber reinforced concrete (UHPFRC) beams with shear reinforcement. Int J Concr Struct M 2016;10(2):177-188. https://doi.org/10.1007/s40069-016-0145-8.
  • Yang IH, Kim BS, Joh C. Shear behaviour of ultra-high performance fibre-reinforced concrete beams without stirrups. Mag Concr Res 2012;64(11):979-993. https://doi.org/10.1680/macr.11.00153.
  • Hegger J, Bertram G. Shear Carrying Capacity of Ultra-High Performance Concrete Beams. Tailor Made Concrete Structures; Walraven JC, Stoelhorst D. Eds.; Taylor & Francis Group: London, UK, 2008:341–347.
  • Ciprian T, Dan B, Victor V, Cornelia. Ultra high performance fiber reinforced concrete I beams subjected to shear action. ACTA Technica Napocensis: Civ Eng Arch 2011;55(2):121-126.
  • Kamal MM, Safan MA, Etman ZA, Salama RA. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers. HBRC J 2014;10:55-63. https://doi.org/10.1016/j.hbrcj.2013.09.008.
  • Ahmad S, Bahij S, Al-Osta MA, Adekunle SK, Al-Dulaijan SU. Shear behavior of ultra-high-performance concrete beams reinforced with high-strength steel bars. ACI Struct J 2019;116(4):3-14. https://doi.org/10.14359/51714484.
  • Voo YL, Foster SJ, Gilbert RI. Shear strength of fiber reinforced reactive powder concrete prestressed girders without stirrups. J Adv Concr Technol 2006; 4(1):123-132.
  • Yavas A, Goker, CO. Impact of reinforcement ratio on shear behavior of I-shaped UHPC beams with and without fiber shear reinforcement. Mater 2020;13(7),1575. https://doi.org/10.3390/ma13071525.
  • ACI 318-19. Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA, 2019.
  • Zagon R., Matthys S., Kiss Z. Shear behaviour of SFR-UHPC I-shaped beams, Constr Build Mater 2016;124:258-268. http://dx.doi.org/10.1016/j.conbuildmat.2016.07.075.
  • Yoo DY, Yuan T, Yang JM, Yoon YS, Feasibility of replacing minimum shear reinforcement with steel fibers for sustainable high-strength concrete beams, Eng Struct 2017;147:207–222. http://dx.doi.org/10.1016/j.engstruct.2017.06.004.
  • Mészöly T, Randl N. Shear behavior of fiber-reinforced ultra-high performance concrete beams Eng Struct 2018;168:119-127. https://doi.org/10.1016/j.engstruct.2018.04.075.
  • EN 12390-1. Testing hardened concrete - Part 1: Shape, dimensions and other requirements for specimens and moulds. European Committee for Standardization, Brussels, Belgium, 2021.
  • EN 12390-3. Testing hardened concrete. Part 3: Compressive strength of test specimens. European Committee for Standardization, Brussels, Belgium, 2019.
  • Yoo DY, Shin HO, Yang JM, Yoon YS. Material bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Compos B Eng 2014;58:122-133. http://dx.doi.org/10.1016/j.compositesb.2013.10.081.
  • Yu R, Spiesz P, Brouwers HJH. Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres. Constr Build Mater 2015;79:273-282. http://dx.doi.org/10.1016/j.conbuildmat.2015.01.050.
  • Ren GM, Wu H, Fang Q, Liu JZ. Effects of steel fiber content and type on static mechanical properties of UHPCC. Constr Build Mater 2018;163:826-839. https://doi.org/10.1016/j.conbuildmat.2017.12.184.
  • TS 500. Requirements for Design and Construction of Reinforced Concrete Structures, Ankara, Turkish Standards Institution, 2000 (in Turkish).
  • ACI 318-11. Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA, 2011.
  • ACI 318-14. Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA, 2014.
  • Park R. Evaluation of ductility of structures and structural assemblages from laboratory testing. Bull New Zealand Natl Soc Earthq Eng 1989;22(3):155-166.
  • Park YJ, Ang AHS. Mechanistic seismic damage model for reinforced concrete, J Struct Eng 1985;3(4):722–739.
  • Shin S, Ghosh SH, Moreno J. Flexural ductility of ultra-high strength concrete members, ACI Struct J 1989;8(4):394–400.
  • Hadi MN, Elbasha N. Effects of tensile reinforcement ratio and compressive strength on the behaviour of over-reinforced helically confined HSC beams. Constr Build Mater 2007;21(2):269–76. http://dx.doi.org/10.1016/J.CONBUILDMAT.2005.08.020.
  • Yoo DY, Banthia N, Yoon YS. Experimental and numerical study on flexural behavior of UHPFRC beams with low reinforcement ratios. Can J Civ Eng 2017;44(1):18-28. https://doi.org/10.1139/cjce-2015-0384.
  • Singh M, Sheikh AH, Ali MSM, Visintin P, Griffith MC. Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams. Constr Build Mater 2017;138:12-25. https://doi.org/10.1016/j.conbuildmat.2017.02.002.
  • Qi J, Wang J, Ma ZJ. Flexural response of high-strength steel-ultra-high-performance fiber reinforced concrete beams based on a mesoscale constitutive model: Experiment and theory. Struct Conc 2018;19(3):719-734. https://doi.org/10.1002/suco.201700043.
  • Biolzi L, Cattaneo S. Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions. Cem Concr Compos 2017;77:1-13. https://doi.org/10.1016/j.cemconcomp.2016.12.002.
  • Yoo DY, Yoon YS. Structural performance of ultra-high-performance concrete beams with different steel fibers. Eng Struct 2015;102: 409-423. https://doi.org/10.1016/j.engstruct.2015.08.029.
  • Dancygier AN, Savir Z. Flexural behavior of HSFRC with low reinforcement ratios. Eng Struct 2006;28:1503–12. https://doi.org/10.1016/j.engstruct.2006.02.005.
  • Dancygier AN, Berkover E. Cracking localization and reduced ductility in fiber-reinforced concrete beams with low reinforcement ratios. Eng Struct 2016;111:411–24. http://dx.doi.org/10.1016/j.engstruct.2015.11.046.
  • Deluce JR, Vecchio FJ. Cracking behavior of steel fiber-reinforced concrete members containing conventional reinforcement. ACI Struct J 2013;110(3):481–90. http://dx.doi.org/10.14359/51685605.
  • Sturm AB, Visintin P, Oehlers DJ. Blending fibres to enhance the flexural properties of UHPFRC beams. Constr Build Mater 2020;244,118328. https://doi.org/10.1016/j.conbuildmat.2020.118328.
  • Pansuk W, Nguyen TN, Sato Y, Uijl JAD, Walraven JC. Shear capacity of high performance fiber reinforced concrete I-beam. Constr Build Mater 2017;157:182-193. https://doi.org/10.1016/j.conbuildmat.2017.09.057.

Replacement of Stirrups by Steel Fibers in Shear Dominant UHPFRC Beams

Yıl 2023, , 103 - 124, 01.03.2023
https://doi.org/10.18400/tjce.1237663

Öz

In the present study, the impacts of variety of fiber types and amounts on shear dominant Ultra High Performance Fiber Reinforced Concrete (UHPFRC) beams and the feasibility of fully replacement of stirrups by the steel fibers were investigated. Fifteen UHPFRC beams containing five different fiber types and three volume fractions were prepared without stirrup and were loaded under four-point loading. The influences of steel fiber were discussed in terms of the load-deflection behavior, cracking behavior, collapse modes, ultimate shear strength, nominal moment capacity and deflection ductility. The steel fiber use prominently increased the post-cracking stiffness and load capacity of the UHPFRC beams with the help of the fibers’ crack-bridging ability. Conversely, the steel fibers in different types didn’t have an importance on the collapse mode of the shear dominant UHPFRC beams. The use of straight steel fibers in the UHPFRC beams, even at very low volume fractions of 0.5 percent, changed the collapse condition from shear to flexure resulting in a ductile behavior. But the hooked fiber inclusion by 1.5 vol percent percent at least is needed to guarantee the flexural behavior regardless of hooked or multi hooked-end form.

Kaynakça

  • Graybeal BA. Flexural behavior of an ultrahigh-performance concrete I-girder. J Bridge Eng 2008;13(6):602-10. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(602).
  • Turker K, Hasgul U, Birol T, Yavas A, Yazici H. Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams. Compos Struct 2019;229,111400.https://doi.org/10.1016/j.compstruct.2019.111400.
  • Yoo DY, Kang ST, Lee JH, Yoon YS. Effect of shrinkage reducing admixture on tensile and flexural behaviors of UHPFRC considering fiber distribution characteristics. Cem Concr Res 2013;54:180-190. https://doi.org/10.1016/j.cemconres.2013.09.006.
  • Kusumawardaningsih Y, Fehling E, Ismail M, Aboubakr AAM. Tensile strength behavior of UHPC and UHPFRC. Procedia Eng 2015;125:1081-1086. https://doi.org/10.1016/j.proeng.2015.11.166.
  • ACI PRC-239-18. Ultra-high-performance concrete: An emerging technology report. American Concrete Institute, Farmington Hills, MI, USA, 2018.
  • Yavas A, Birol T, Turker K, Hasgul U, Yazici H. Improvement of flexural performance of UHPFRC with hybrid steel fiber. Tech J 2020;31(6):10379-10397. https://doi.org/10.18400/tekderg.485565.
  • Yavas A, Hasgul U, Turker K, Birol T. Effective fiber type investigation on the shear behavior of ultrahigh-performance fiber-reinforced concrete beams. Adv Struc Eng 2019;22(7):1591-1605. https://doi.org/10.1177/1369433218820788.
  • Park JJ, Kang ST, Koh KT, Kim SW. Influence of the Ingredients on the Compressive Strength of UHPC as A Fundamental Study to Optimize the Mixing Proportion. In Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, 5-7 March 2008:105–112.
  • Yoo DY, Lee JH, Yoon YS. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Compos Struct 2013;106:742-753. https://doi.org/10.1016/j.compstruct.2013.07.033.
  • Meng W, Valipour M, Khayat KH. Optimization and performance of cost-effective ultra-high performance concrete. Mater Struct 2017;50:1-16. https://doi.org/10.1617/s11527-016-0896-3
  • Banthia N, Majdzadeh F, Wu J, Bindiganavile V. Fiber synergy in hybrid fiber reinforced concrete (HyFRC) in flexure and direct shear. Cem Concr Compos 2014;48:91-7. https://doi.org/10.1016/j.cemconcomp.2013.10.018.
  • Yoo DY, Banthia N, Yoon YS. Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Eng Struct 2016;111:246-262. https://doi.org/10.1016/j.engstruct.2015.12.003.
  • Hasgul U, Turker K, Birol T, Yavas A. Flexural behavior of ultra‐high‐performance fiber reinforced concrete beams with low and high reinforcement ratios. Struct Conc 2018;19(6):1577-1590. https://doi.org/10.1002/suco.201700089.
  • Turker K, Birol T, Yavas A, Hasgul U. Effective steel fiber type investigation on ultra high performance fiber reinforced concrete beams. Afyon Kocatepe Univ J Sci Eng 2016;16: 776-785 (in Turkish). https://doi.org/10.5578/fmbd.39342.
  • Baby F, Marchand P, Toutlemonde F. Shear behavior of ultra high performance fiber-reinforced concrete beams. I: experimental investigation. J Struct Eng 2014;140(5). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000907.
  • El-Dieb AS, El-Maaddawy TA, Al-Rawashdah O. Shear behavior of ultra-high-strength steel fiberreinforced self-compacting concrete beams. In: Proceedings of the construction materials and structures (eds SO Ekolu, M Dundu, X Gao), Johannesburg, South Africa, 24–26 November 2014:972–979.
  • Qi JN, Ma ZJ, Wang JQ, Liu TX. Post-cracking shear strength and deformability of HSS-UHPFRC beams. Struct Conc 2016;17(6):1033-1046. https://doi.org/10.1002/suco.201500191.
  • Voo YL, Poon WK, Foster SJ. Shear strength of steel fiber-reinforced ultra high-performance concrete beams without stirrups. J Struct Eng 2010;136(11):1393-1400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234.
  • Ngo TT, Park JK, Pyo S, Kim DJ. Shear resistance of ultra-high-performance fiber-reinforced concrete. Constr Build Mater 2017;151:246-257. https://doi.org/10.1016/j.conbuildmat.2017.06.079.
  • Lim WY, Hong SG. Shear tests for ultra-high performance fiber reinforced concrete (UHPFRC) beams with shear reinforcement. Int J Concr Struct M 2016;10(2):177-188. https://doi.org/10.1007/s40069-016-0145-8.
  • Yang IH, Kim BS, Joh C. Shear behaviour of ultra-high performance fibre-reinforced concrete beams without stirrups. Mag Concr Res 2012;64(11):979-993. https://doi.org/10.1680/macr.11.00153.
  • Hegger J, Bertram G. Shear Carrying Capacity of Ultra-High Performance Concrete Beams. Tailor Made Concrete Structures; Walraven JC, Stoelhorst D. Eds.; Taylor & Francis Group: London, UK, 2008:341–347.
  • Ciprian T, Dan B, Victor V, Cornelia. Ultra high performance fiber reinforced concrete I beams subjected to shear action. ACTA Technica Napocensis: Civ Eng Arch 2011;55(2):121-126.
  • Kamal MM, Safan MA, Etman ZA, Salama RA. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers. HBRC J 2014;10:55-63. https://doi.org/10.1016/j.hbrcj.2013.09.008.
  • Ahmad S, Bahij S, Al-Osta MA, Adekunle SK, Al-Dulaijan SU. Shear behavior of ultra-high-performance concrete beams reinforced with high-strength steel bars. ACI Struct J 2019;116(4):3-14. https://doi.org/10.14359/51714484.
  • Voo YL, Foster SJ, Gilbert RI. Shear strength of fiber reinforced reactive powder concrete prestressed girders without stirrups. J Adv Concr Technol 2006; 4(1):123-132.
  • Yavas A, Goker, CO. Impact of reinforcement ratio on shear behavior of I-shaped UHPC beams with and without fiber shear reinforcement. Mater 2020;13(7),1575. https://doi.org/10.3390/ma13071525.
  • ACI 318-19. Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA, 2019.
  • Zagon R., Matthys S., Kiss Z. Shear behaviour of SFR-UHPC I-shaped beams, Constr Build Mater 2016;124:258-268. http://dx.doi.org/10.1016/j.conbuildmat.2016.07.075.
  • Yoo DY, Yuan T, Yang JM, Yoon YS, Feasibility of replacing minimum shear reinforcement with steel fibers for sustainable high-strength concrete beams, Eng Struct 2017;147:207–222. http://dx.doi.org/10.1016/j.engstruct.2017.06.004.
  • Mészöly T, Randl N. Shear behavior of fiber-reinforced ultra-high performance concrete beams Eng Struct 2018;168:119-127. https://doi.org/10.1016/j.engstruct.2018.04.075.
  • EN 12390-1. Testing hardened concrete - Part 1: Shape, dimensions and other requirements for specimens and moulds. European Committee for Standardization, Brussels, Belgium, 2021.
  • EN 12390-3. Testing hardened concrete. Part 3: Compressive strength of test specimens. European Committee for Standardization, Brussels, Belgium, 2019.
  • Yoo DY, Shin HO, Yang JM, Yoon YS. Material bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Compos B Eng 2014;58:122-133. http://dx.doi.org/10.1016/j.compositesb.2013.10.081.
  • Yu R, Spiesz P, Brouwers HJH. Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres. Constr Build Mater 2015;79:273-282. http://dx.doi.org/10.1016/j.conbuildmat.2015.01.050.
  • Ren GM, Wu H, Fang Q, Liu JZ. Effects of steel fiber content and type on static mechanical properties of UHPCC. Constr Build Mater 2018;163:826-839. https://doi.org/10.1016/j.conbuildmat.2017.12.184.
  • TS 500. Requirements for Design and Construction of Reinforced Concrete Structures, Ankara, Turkish Standards Institution, 2000 (in Turkish).
  • ACI 318-11. Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA, 2011.
  • ACI 318-14. Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA, 2014.
  • Park R. Evaluation of ductility of structures and structural assemblages from laboratory testing. Bull New Zealand Natl Soc Earthq Eng 1989;22(3):155-166.
  • Park YJ, Ang AHS. Mechanistic seismic damage model for reinforced concrete, J Struct Eng 1985;3(4):722–739.
  • Shin S, Ghosh SH, Moreno J. Flexural ductility of ultra-high strength concrete members, ACI Struct J 1989;8(4):394–400.
  • Hadi MN, Elbasha N. Effects of tensile reinforcement ratio and compressive strength on the behaviour of over-reinforced helically confined HSC beams. Constr Build Mater 2007;21(2):269–76. http://dx.doi.org/10.1016/J.CONBUILDMAT.2005.08.020.
  • Yoo DY, Banthia N, Yoon YS. Experimental and numerical study on flexural behavior of UHPFRC beams with low reinforcement ratios. Can J Civ Eng 2017;44(1):18-28. https://doi.org/10.1139/cjce-2015-0384.
  • Singh M, Sheikh AH, Ali MSM, Visintin P, Griffith MC. Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams. Constr Build Mater 2017;138:12-25. https://doi.org/10.1016/j.conbuildmat.2017.02.002.
  • Qi J, Wang J, Ma ZJ. Flexural response of high-strength steel-ultra-high-performance fiber reinforced concrete beams based on a mesoscale constitutive model: Experiment and theory. Struct Conc 2018;19(3):719-734. https://doi.org/10.1002/suco.201700043.
  • Biolzi L, Cattaneo S. Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions. Cem Concr Compos 2017;77:1-13. https://doi.org/10.1016/j.cemconcomp.2016.12.002.
  • Yoo DY, Yoon YS. Structural performance of ultra-high-performance concrete beams with different steel fibers. Eng Struct 2015;102: 409-423. https://doi.org/10.1016/j.engstruct.2015.08.029.
  • Dancygier AN, Savir Z. Flexural behavior of HSFRC with low reinforcement ratios. Eng Struct 2006;28:1503–12. https://doi.org/10.1016/j.engstruct.2006.02.005.
  • Dancygier AN, Berkover E. Cracking localization and reduced ductility in fiber-reinforced concrete beams with low reinforcement ratios. Eng Struct 2016;111:411–24. http://dx.doi.org/10.1016/j.engstruct.2015.11.046.
  • Deluce JR, Vecchio FJ. Cracking behavior of steel fiber-reinforced concrete members containing conventional reinforcement. ACI Struct J 2013;110(3):481–90. http://dx.doi.org/10.14359/51685605.
  • Sturm AB, Visintin P, Oehlers DJ. Blending fibres to enhance the flexural properties of UHPFRC beams. Constr Build Mater 2020;244,118328. https://doi.org/10.1016/j.conbuildmat.2020.118328.
  • Pansuk W, Nguyen TN, Sato Y, Uijl JAD, Walraven JC. Shear capacity of high performance fiber reinforced concrete I-beam. Constr Build Mater 2017;157:182-193. https://doi.org/10.1016/j.conbuildmat.2017.09.057.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Umut Hasgül 0000-0002-9358-3369

Altuğ Yavaş Bu kişi benim 0000-0002-2619-8671

Tamer Birol Bu kişi benim 0000-0003-2428-6202

Yayımlanma Tarihi 1 Mart 2023
Gönderilme Tarihi 22 Mart 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Hasgül, U., Yavaş, A., & Birol, T. (2023). Replacement of Stirrups by Steel Fibers in Shear Dominant UHPFRC Beams. Turkish Journal of Civil Engineering, 34(2), 103-124. https://doi.org/10.18400/tjce.1237663
AMA Hasgül U, Yavaş A, Birol T. Replacement of Stirrups by Steel Fibers in Shear Dominant UHPFRC Beams. tjce. Mart 2023;34(2):103-124. doi:10.18400/tjce.1237663
Chicago Hasgül, Umut, Altuğ Yavaş, ve Tamer Birol. “Replacement of Stirrups by Steel Fibers in Shear Dominant UHPFRC Beams”. Turkish Journal of Civil Engineering 34, sy. 2 (Mart 2023): 103-24. https://doi.org/10.18400/tjce.1237663.
EndNote Hasgül U, Yavaş A, Birol T (01 Mart 2023) Replacement of Stirrups by Steel Fibers in Shear Dominant UHPFRC Beams. Turkish Journal of Civil Engineering 34 2 103–124.
IEEE U. Hasgül, A. Yavaş, ve T. Birol, “Replacement of Stirrups by Steel Fibers in Shear Dominant UHPFRC Beams”, tjce, c. 34, sy. 2, ss. 103–124, 2023, doi: 10.18400/tjce.1237663.
ISNAD Hasgül, Umut vd. “Replacement of Stirrups by Steel Fibers in Shear Dominant UHPFRC Beams”. Turkish Journal of Civil Engineering 34/2 (Mart 2023), 103-124. https://doi.org/10.18400/tjce.1237663.
JAMA Hasgül U, Yavaş A, Birol T. Replacement of Stirrups by Steel Fibers in Shear Dominant UHPFRC Beams. tjce. 2023;34:103–124.
MLA Hasgül, Umut vd. “Replacement of Stirrups by Steel Fibers in Shear Dominant UHPFRC Beams”. Turkish Journal of Civil Engineering, c. 34, sy. 2, 2023, ss. 103-24, doi:10.18400/tjce.1237663.
Vancouver Hasgül U, Yavaş A, Birol T. Replacement of Stirrups by Steel Fibers in Shear Dominant UHPFRC Beams. tjce. 2023;34(2):103-24.