Araştırma Makalesi
BibTex RIS Kaynak Göster

Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control

Yıl 2025, Cilt: 36 Sayı: 5, 111 - 148, 01.09.2025
https://doi.org/10.18400/tjce.1603567

Öz

This study investigates the effects of curing period (0, 4, 7, and 28 days), density (1.6 and 1.8 g/cm³), and cement content (1%, 3%, 6%, and 10%) on the behavior of cemented sand. Unconfined compressive strength (UCS) tests assessed strength, while permeability was evaluated through constant head tests. Additionally, ultra-pulse velocity (UPV) testing was used to assess shear modulus (G0) as a nondestructive evaluation method. The findings demonstrate that increasing the cement content and extending the curing duration enhance both strength and shear modulus while reducing permeability. Specifically, a cement content of 10% and a curing period of 28 days result in a significant improvement, with UCS reaching 2.7 MPa and G0 attaining 1.2 MPa. Higher density also enhances strength and G0 but lowers permeability. Hydrological modeling of stormwater systems reveals that increasing cement content elevates surface runoff volume and shifts the soil Curve Number from 61 to 89 (for 1% and 10% cement at 1.8 g/cm³ density, respectively), indicating reduced infiltration capacity and increased runoff potential. Statistical analysis confirmed significant relationships between cement content, curing time, density, and the resulting strength and permeability, with p-values below 5%, indicating strong statistical significance. For urban stormwater systems requiring permeability-strength equilibrium, the 1.8 g/cm3 density, 6% cement, and 7-day curing mix is recommended to support groundwater recharge while maintaining pavement durability.

Kaynakça

  • J. Huang, A.E. Hartemink, Soil and environmental issues in sandy soils, (2020). https://doi.org/10.1016/j.earscirev.2020.103295.
  • A. Bruand, C. Hartmann, G. Lesturgez, Physical properties of tropical sandy soils : a large range of behaviours, (2005).
  • J.G. Bockheim, A.E. Hartemink, J. Huang, Distribution and properties of sandy soils in the conterminous USA – A conceptual thickness model, and taxonomic analysis, Catena (Amst) 195 (2020) 104746. https://doi.org/10.1016/J.CATENA.2020.104746.
  • M. Shahbazi, M. Rowshanzamir, S.M. Abtahi, S.M. Hejazi, Optimization of carpet waste fibers and steel slag particles to reinforce expansive soil using response surface methodology, Appl Clay Sci 142 (2017) 185–192. https://doi.org/10.1016/J.CLAY.2016.11.027.
  • E.C. Brevik, A.E. Hartemink, Early soil knowledge and the birth and development of soil science, Catena (Amst) 83 (2010) 23–33. https://doi.org/10.1016/J.CATENA.2010.06.011.
  • C. McDowell, stabilization of soils with lime, lime-flyash, and other lime reactive materials, Highway Research Board Bulletin (1959).
  • R. Eires, A. Camões, S. Jalali, Ancient Materials and Techniques to Improve the Earthen Building Durability, Key Eng Mater 634 (2015) 357–366. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.634.357.
  • C. Kelley, durability and maintenance of lime-stabilized bases, (1977).
  • R.O. Abd-Al Ftah, B.A. Tayeh, K. Abdelsamie, R.D.A. Hafez, Assessment on structural and mechanical properties of reinforcement concrete beams prepared with luffa cylindrical fibre, Case Studies in Construction Materials 17 (2022) e01283. https://doi.org/10.1016/J.CSCM.2022.E01283.
  • Y.I.A. Aisheh, D.S. Atrushi, M.H. Akeed, S. Qaidi, B.A. Tayeh, Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC), Case Studies in Construction Materials 17 (2022) e01245. https://doi.org/10.1016/J.CSCM.2022.E01245.
  • L.K. Sharma, N.N. Sirdesai, K.M. Sharma, T.N. Singh, Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study, Appl Clay Sci 152 (2018) 183–195. https://doi.org/10.1016/J.CLAY.2017.11.012.
  • H. Verma, A. Ray, R. Rai, T. Gupta, N. Mehta, Ground improvement using chemical methods: A review, Heliyon 7 (2021) e07678. https://doi.org/10.1016/J.HELIYON.2021.E07678.
  • I. Chang, M. Lee, A.T.P. Tran, S. Lee, Y.M. Kwon, J. Im, G.C. Cho, Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices, Transportation Geotechnics 24 (2020) 100385. https://doi.org/10.1016/J.TRGEO.2020.100385.
  • H. Afrin, A Review on Different Types Soil Stabilization Techniques, Habiba Afrin. A Review on Different Types Soil Stabilization Techniques. International Journal of Transportation Engineering and Technology 3 (2017) 19–24. https://doi.org/10.11648/j.ijtet.20170302.12.
  • F.A. Gidebo, H. Yasuhara, N. Kinoshita, Stabilization of expansive soil with agricultural waste additives: a review, International Journal of Geo-Engineering 14 (2023) 1–18. https://doi.org/10.1186/S40703-023-00194-X/TABLES/1.
  • M. Umar, K.A. Kassim, K.T. Ping Chiet, Biological process of soil improvement in civil engineering: A review, Journal of Rock Mechanics and Geotechnical Engineering 8 (2016) 767–774. https://doi.org/10.1016/J.JRMGE.2016.02.004.
  • M. Patil, P.H. Dalal, S. Shreedhar, T.N. Dave, K.K.R. Iyer, Biostabilization techniques and applications in Civil Engineering: State-of-the-Art, Constr Build Mater 309 (2021) 125098. https://doi.org/10.1016/J.CONBUILDMAT.2021.125098.
  • V. Rajoria, S. Kaur, a review on stabilization of soil using bio-enzyme, ijret: International Journal of Research in Engineering and Technology (n.d.) 2321–7308. http://www.ijret.org (accessed June 11, 2023).
  • H. Verma, A. Ray, R. Rai, T. Gupta, N. Mehta, Ground improvement using chemical methods: A review, Heliyon 7 (n.d.) 7678. https://doi.org/10.1016/J.HELIYON.2021.E07678.
  • D. Barman, S.K. Dash, Stabilization of expansive soils using chemical additives: A review, Journal of Rock Mechanics and Geotechnical Engineering 14 (2022) 1319–1342. https://doi.org/10.1016/J.JRMGE.2022.02.011.
  • A.A. Firoozi, C. Guney Olgun, A.A. Firoozi, M.S. Baghini, Fundamentals of soil stabilization, International Journal of Geo-Engineering 8 (2017) 1–16. https://doi.org/10.1186/S40703-017-0064-9/FIGURES/3.
  • A.A.S. Correia, P.D.F. Casaleiro, D.T.R. Figueiredo, M.S.M.R. Moura, M.G. Rasteiro, Key-Parameters in Chemical Stabilization of Soils with Multiwall Carbon Nanotubes, Applied Sciences 2021, Vol. 11, Page 8754 11 (2021) 8754. https://doi.org/10.3390/APP11188754.
  • M.S. Abid, Stabilization of Soil using Chemical Additives, GRD Journal for Engineering | 1 (2016). www.grdjournals.com (accessed June 11, 2023).
  • G.M. Bhatlawande, A.C. Babar, A.A. Darge, A Review on Different Methods of Soil Stabilization, International Journal of Engineering Science and Computing (2019). http://ijesc.org/ (accessed June 11, 2023).
  • M. Laishram, D. Singh, S. Kumar, The Utilization of Industrial Waste as a Stabilizing Agent—A Review, Lecture Notes in Civil Engineering 281 (2023) 239–247. https://doi.org/10.1007/978-981-19-4731-5_22/TABLES/5.
  • E. Zlatanović, N. Marinković, Z. Bonić, N. Romić, S. Djorić-Veljković, D. Cvetković, D. Djordjević, Comparative Study of the Effects of Conventional, Waste, and Alternative Materials on the Geomechanical Properties of Clayey Soil in the Chemical Soil Stabilisation Technique, Applied Sciences 2024, Vol. 14, Page 6249 14 (2024) 6249. https://doi.org/10.3390/APP14146249.
  • J.B. Croft, The Influence of Soil Mineralogical Composition on Cement Stabilization, Https://Doi.Org/10.1680/Geot.1967.17.2.119 17 (2015) 119–135. https://doi.org/10.1680/GEOT.1967.17.2.119.
  • Cement, Building Materials in Civil Engineering (2011) 46–423. https://doi.org/10.1533/9781845699567.46.
  • D. Marchon, R.J. Flatt, Mechanisms of cement hydration, Science and Technology of Concrete Admixtures (2016) 129–145. https://doi.org/10.1016/B978-0-08-100693-1.00008-4.
  • H. Yang, Z. Qian, B. Yue, Z. Xie, Effects of Cement Dosage, Curing Time, and Water Dosage on the Strength of Cement-Stabilized Aeolian Sand Based on Macroscopic and Microscopic Tests, Materials 2024, Vol. 17, Page 3946 17 (2024) 3946. https://doi.org/10.3390/MA17163946.
  • N.C. Consoli, D. Foppa, L. Festugato, K.S. Heineck, Key Parameters for Strength Control of Artificially Cemented Soils, Journal of Geotechnical and Geoenvironmental Engineering 133 (2007) 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197)/ASSET/12F5F147-8951-4DE1-9F0A-F5B3A38FD7E1/ASSETS/GRAPHIC/15.JPG.
  • I. Shooshpasha, R.A. Shirvani, Effect of cement stabilization on geotechnical properties of sandy soils, Geomechanics and Engineering 8 (2015) 17–31. https://doi.org/10.12989/GAE.2015.8.1.017.
  • S. Ahmad, O.S.B. Al-Amoudi, Y.M.H. Mustafa, M. Maslehuddin, M.H. Al-Malack, Stabilization and Solidification of Oil-Contaminated Sandy Soil Using Portland Cement and Supplementary Cementitious Materials, Journal of Materials in Civil Engineering 32 (2020). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003169.
  • N.C. Consoli, R.C. Cruz, M.F. Floss, Variables Controlling Strength of Artificially Cemented Sand: Influence of Curing Time, Journal of Materials in Civil Engineering 23 (2011) 692–696. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000205/ASSET/E83D346D-BC59-489D-B3DB-D8BA079A05DA/ASSETS/IMAGES/LARGE/6.JPG.
  • H. Choo, H. Nam, W. Lee, A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength, J Appl Geophy 147 (2017) 102–108. https://doi.org/10.1016/J.JAPPGEO.2017.10.012.
  • T.S. Amhadi, G.J. Assaf, G. Saygili, G. Loprencipe, Improvement of Pavement Subgrade by Adding Cement and Fly Ash to Natural Desert Sand, Infrastructures 2021, Vol. 6, Page 151 6 (2021) 151. https://doi.org/10.3390/INFRASTRUCTURES6110151.
  • A.F. Cabalar, R.A. Omar, Stabilizing a silt using waste limestone powder, Bulletin of Engineering Geology and the Environment 82 (2023) 1–16. https://doi.org/10.1007/S10064-023-03302-4/FIGURES/21.
  • A.F. Cabalar, Z. Karabash, Influence of Cement Type and Sample Preparation on the Small-Strain Behaviour of Sands, Arab J Sci Eng 44 (2019) 8835–8848. https://doi.org/10.1007/S13369-019-04070-8/FIGURES/21.
  • T.S. Amhadi, G.J. Assaf, Strength and permeability potentials of cement-modified desert sand for roads construction purpose, Innovative Infrastructure Solutions 5 (2020) 1–10. https://doi.org/10.1007/S41062-020-00327-6/FIGURES/14.
  • H. Farshbaf Aghajani, H. Soltani-Jigheh, M. Salimi, S. Karimi, V. Estekanchi, R. Akbarzadeh Ahari, Investigating the strength, hydraulic conductivity, and durability of the CSG (cemented sand-gravel) check dams: a case study in Iran, SN Appl Sci 4 (2022) 1–19. https://doi.org/10.1007/S42452-022-05062-4/TABLES/6.
  • H. Farshbaf Aghajani, H. Soltani-Jigheh, M. Salimi, S. Karimi, V. Estekanchi, R. Akbarzadeh Ahari, Investigating the strength, hydraulic conductivity, and durability of the CSG (cemented sand-gravel) check dams: a case study in Iran, SN Appl Sci 4 (2022) 1–19. https://doi.org/10.1007/S42452-022-05062-4/TABLES/6.
  • S. Shahi, E. Fakhri, H. Yavari, S. Maleki Dizaj, S. Salatin, K. Khezri, Portland Cement: An Overview as a Root Repair Material, Biomed Res Int 2022 (2022) 3314912. https://doi.org/10.1155/2022/3314912.
  • I.M. Padilla Espinosa, N. Barua, R. V. Mohan, Hydrostatic compression and pressure phase transition of major Portland cement constituents – Insights via molecular dynamics modeling, CEMENT 7 (2022) 100017. https://doi.org/10.1016/J.CEMENT.2021.100017.
  • N. Arabi, N. Chelghoum, R. Jauberthie, L. Molez, Formation of C-S-H in calcium hydroxide-blast furnace slag-quartz-water system in autoclaving conditions, 27 (2015) 153–162. https://doi.org/10.1680/adcr.13.00069ï.
  • M.J. McCarthy, T.D. Dyer, Pozzolanas and Pozzolanic Materials, Lea’s Chemistry of Cement and Concrete (2019) 363–467. https://doi.org/10.1016/B978-0-08-100773-0.00009-5.
  • E. John, T. Matschei, D. Stephan, Nucleation seeding with calcium silicate hydrate – A review, Cem Concr Res 113 (2018) 74–85. https://doi.org/10.1016/J.CEMCONRES.2018.07.003.
  • F. Bell, Engineering Treatment of Soils, Engineering Treatment of Soils (1993) 235–245. https://doi.org/10.1201/9781482288971.
  • N.C. Consoli, M.A. Vendruscolo, A. Fonini, F.D. Rosa, Fiber reinforcement effects on sand considering a wide cementation range, Geotextiles and Geomembranes 27 (2009) 196–203. https://doi.org/10.1016/J.GEOTEXMEM.2008.11.005.
  • S.S. Park, Unconfined compressive strength and ductility of fiber-reinforced cemented sand, Constr Build Mater 25 (2011) 1134–1138. https://doi.org/10.1016/J.CONBUILDMAT.2010.07.017.
  • J.R. Prusinski, S. Bhattacharja, Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils, Transp Res Rec 1 (1999) 215–227. https://doi.org/10.3141/1652-28.
  • K.A. Saeed, K.A. Kassim, H. Nur, Fizikalno-kemijska karakterizacija kaolinske gline s dodatkom cementa, Gradjevinar 66 (2014) 513–521. https://doi.org/10.14256/JCE.976.2013.
  • S. Chaiyaput, N. Arwaedo, N. Kingnoi, T. Nghia-Nguyen, J. Ayawanna, Effect of curing conditions on the strength of soil cement, Case Studies in Construction Materials 16 (2022) e01082. https://doi.org/10.1016/J.CSCM.2022.E01082.
  • K.-S. Oh, T.-H. Kim, Dependence of the Material Properties of Lightweight Cemented Soil on the Curing Temperature, Journal of Materials in Civil Engineering 26 (2014). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000940.
  • J.T. Huang, D.W. Airey, Properties of Artificially Cemented Carbonate Sand, Journal of Geotechnical and Geoenvironmental Engineering 124 (1998) 492–499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492).
  • E. da S. Menger, M. Benetti, L. Festugato, L. da S. Ibeiro, R.D. Luza, Hydraulic Conductivity and Compressive Strength of Cemented Soils, Geotechnical and Geological Engineering 38 (2020) 6031–6039. https://doi.org/10.1007/S10706-020-01411-5/TABLES/4.
  • F.C. Loch, O.J. Pejon, Study of Moisture and Cement Rates Influence on Hydraulic Conductivity of a Stabilized Sandy Soil by Means of a Factorial Design of Experiments, Engineering Geology for Society and Territory - Volume 5 (2015) 1333–1335. https://doi.org/10.1007/978-3-319-09048-1_254.
  • N.D. Quang, J.C. Chai, Permeability of lime- and cement-treated clayey soils, Canadian Geotechnical Journal 52 (2015) 1221–1227. https://doi.org/10.1139/CGJ-2014-0134/ASSET/IMAGES/CGJ-2014-0134TAB7.GIF.
  • F.C. Loch, O.J. Pejon, Study of Moisture and Cement Rates Influence on Hydraulic Conductivity of a Stabilized Sandy Soil by Means of a Factorial Design of Experiments, Engineering Geology for Society and Territory - Volume 5 (2015) 1333–1335. https://doi.org/10.1007/978-3-319-09048-1_254.
  • J. Ji, G. Fan, Prediction of the permeability-reducing effect of cement infiltration into sandy soils, Water Supply 17 (2017) 851–858. https://doi.org/10.2166/WS.2016.183.
  • B.T. Luong, H.-H. Tran-Nguyen, Investigation of Microstructure of Dredging Sand Mixing Cement Specimens to Interpret Reduction of Permeability, (2022) 157–166. https://doi.org/10.1061/9780784484012.016.
  • X. Dong, X. Bao, H. Cui, C. Xu, X. Chen, Effects of Cement Treatment on Mechanical Properties and Microstructure of a Granite Residual Soil, Applied Sciences 2022, Vol. 12, Page 12549 12 (2022) 12549. https://doi.org/10.3390/APP122412549.
  • S. Wang, X. He, G. Cai, L. Lang, H. Ma, S. Gong, Z. Niu, Investigation on Water Transformation and Pore Structure of Cement-Stabilized Dredged Sediment Based on NMR Technology, Materials 2022, Vol. 15, Page 3178 15 (2022) 3178. https://doi.org/10.3390/MA15093178.
  • Z. Chong-hui, W. Zeng-hong, Experimental Research on the Variation Regularity of Permeability Coefficient of Cement Soil, Journal of Changjiang River Scientific Research Institute 30 (2013) 59. https://doi.org/10.3969/J.ISSN.1001-5485.2013.07.012.
  • A. Sičáková, M. Kováč, Relationships between Functional Properties of Pervious Concrete, Sustainability 2020, Vol. 12, Page 6318 12 (2020) 6318. https://doi.org/10.3390/SU12166318.
  • N.C. Consoli, F.D. Rosa, A. Fonini, Plate Load Tests on Cemented Soil Layers Overlaying Weaker Soil, Journal of Geotechnical and Geoenvironmental Engineering 135 (2009) 1846–1856. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000158.
  • U.N.D. of E. and S. Affairs, World Population Prospects 2017 - Volume I: Comprehensive Tables, (2021). https://doi.org/10.18356/9789210001014.
  • United Nations, World Population Prospects: The 2017 Revision | DESA Publications, (2017). https://desapublications.un.org/publications/world-population-prospects-2017-revision (accessed March 23, 2025).
  • B.J. Hibbs, J.M. Sharp, Hydrogeological impacts of urbanization, Environmental and Engineering Geoscience 18 (2012) 3–24. https://doi.org/10.2113/GSEEGEOSCI.18.1.3.
  • C.M. Liu, J.W. Chen, Y.S. Hsieh, M.L. Liou, T.H. Chen, Build sponge eco-cities to adapt hydroclimatic hazards, Handbook of Climate Change Adaptation (2015) 1997–2009. https://doi.org/10.1007/978-3-642-38670-1_91.
  • C.E. Wilson, W.F. Hunt, R.J. Winston, P. Smith, Comparison of Runoff Quality and Quantity from a Commercial Low-Impact and Conventional Development in Raleigh, North Carolina, Journal of Environmental Engineering 141 (2015) 05014005. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000842/ASSET/56E283CA-1032-4EC7-90C3-639912991EC4/ASSETS/IMAGES/LARGE/FIGURE8.JPG.
  • M.E. Dietz, J.C. Clausen, Stormwater runoff and export changes with development in a traditional and low impact subdivision, J Environ Manage 87 (2008) 560–566. https://doi.org/10.1016/J.JENVMAN.2007.03.026.
  • L.-M. Chen, J.-W. Chen, T.-H. Chen, T. Lecher, P.C. Davidson, Measurement of Permeability and Comparison of Pavements, (2019). https://doi.org/10.3390/w11030444.
  • Low Impact Development (LID), (2000).
  • S. Planning Roundtable, C. Bay Program, Prepared by the Prepared for the BETTER SITE DESIGN: A Handbook for Changing Development Rules in Your Community, (n.d.).
  • U. Environmental Protection Agency, O. of Water, Stormwater Best Management Practice Permeable Pavements Minimum Measure: Post Construction Stormwater Management in New Development and Redevelopment Subcategory: Infiltration, (n.d.). https://www.epa.gov/npdes (accessed June 13, 2023).
  • ASTM, ASTM C150/C150M-21: Standard Specification for Portland Cement, ASTM International D3699 (2021).
  • N.C. Consoli, M.A. Vendruscolo, A. Fonini, F.D. Rosa, Fiber reinforcement effects on sand considering a wide cementation range, Geotextiles and Geomembranes 27 (2009) 196–203. https://doi.org/10.1016/J.GEOTEXMEM.2008.11.005.
  • N.C. Consoli, F.D. Rosa, A. Fonini, Plate Load Tests on Cemented Soil Layers Overlaying Weaker Soil, Journal of Geotechnical and Geoenvironmental Engineering 135 (2009) 1846–1856. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000158/ASSET/2A7E7EEB-7A9B-48CB-858D-E2AC303E7EF7/ASSETS/IMAGES/LARGE/15.JPG.
  • ASTM C511-03, Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes, American Society for Testing and Materials (2003).
  • Test Method for Permeability of Granular Soils (Constant Head), (2022). https://doi.org/10.1520/D2434-22.
  • ASTM International, ASTM D1633 - 00(2007) Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders, ASTM International, West Conshohocken, PA, USA, (2007).
  • Test Method for Unconfined Compressive Strength of Cohesive Soil, (2006). https://doi.org/10.1520/D2166-06.
  • Test Method for Pulse Velocity Through Concrete, (2002). https://doi.org/10.1520/C0597-02.
  • J. V. Kozubal, T. Kania, A.S. Tarawneh, A. Hassanat, R. Lawal, Ultrasonic assessment of cement-stabilized soils: Deep learning experimental results, Measurement 223 (2023) 113793. https://doi.org/10.1016/J.MEASUREMENT.2023.113793.
  • W.S. Sarro, G.M. Assis, G.C.S. Ferreira, Experimental investigation of the UPV wavelength in compacted soil, Constr Build Mater 272 (2021) 121834. https://doi.org/10.1016/J.CONBUILDMAT.2020.121834.
  • M. Hanafi, I. Javed, A. Ekinci, Evaluating the strength, durability and porosity characteristics of alluvial clay stabilized with marble dust as a sustainable binder, Results in Engineering 25 (2025) 103978. https://doi.org/10.1016/J.RINENG.2025.103978.
  • L. Al-Subari, A. Ekinci, E. Aydın, The utilization of waste rubber tire powder to improve the mechanical properties of cement-clay composites, Constr Build Mater 300 (2021) 124306. https://doi.org/10.1016/J.CONBUILDMAT.2021.124306.
  • N. Sathiparan, W.G.B.S. Jayasundara, K.S.D. Samarakoon, B. Banujan, Prediction of characteristics of cement stabilized earth blocks using non-destructive testing: Ultrasonic pulse velocity and electrical resistivity, Materialia (Oxf) 29 (2023) 101794. https://doi.org/10.1016/J.MTLA.2023.101794.
  • J.A. Oke, H. Abuel-Naga, Assessment of a Non-Destructive Testing Method Using Ultrasonic Pulse Velocity to Determine the Compressive Strength of Rubberized Bricks Produced with Lime Kiln Dust Waste, Geotechnics 2023, Vol. 3, Pages 1294-1308 3 (2023) 1294–1308. https://doi.org/10.3390/GEOTECHNICS3040070.
  • Y. Bai, Y. Li, R. Zhang, N. Zhao, X. Zeng, Comprehensive performance evaluation system based on environmental and economic benefits for optimal allocation of LID facilities, Water (Switzerland) 11 (2019). https://doi.org/10.3390/W11020341.
  • T. Cui, Y. Long, Y. Wang, Choosing the LID for Urban Storm Management in the South of Taiyuan Basin by Comparing the Storm Water Reduction Efficiency, Water 2019, Vol. 11, Page 2583 11 (2019) 2583. https://doi.org/10.3390/W11122583.
  • M.A. Ismail, H.A. Joer, M.F. Randolph, Sample Preparation Technique for Artificially Cemented Soils, Geotechnical Testing Journal 23 (2000) 171–177. https://doi.org/10.1520/GTJ11041J.
  • L. Zhang, Y. Li, X. Wei, X. Liang, J. Zhang, X. Li, Unconfined Compressive Strength of Cement-Stabilized Qiantang River Silty Clay, Materials 2024, Vol. 17, Page 1082 17 (2024) 1082. https://doi.org/10.3390/MA17051082.
  • H.D. Do, V.N. Pham, H.H. Nguyen, P.N. Huynh, J. Han, Prediction of Unconfined Compressive Strength and Flexural Strength of Cement-Stabilized Sandy Soils: A Case Study in Vietnam, Geotechnical and Geological Engineering 39 (2021) 4947–4962. https://doi.org/10.1007/S10706-021-01805-Z/FIGURES/14.
  • M.A. Ashraf, S.M.S. Rahman, M.O. Faruk, M.A. Bashar, Determination of Optimum Cement Content for Stabilization of Soft Soil and Durability Analysis of Soil Stabilized with Cement, American Journal of Civil Engineering 2018, Volume 6, Page 39 6 (2018) 39–43. https://doi.org/10.11648/J.AJCE.20180601.17.
  • A.S. Muhammed, K. Kassim, M.U. Zango, C.S. Chong, Bio-cementation of Sandy Soil at different Relative Density, (2020).
  • Y. Zhao Id, F. Qiao, F. Meng, Z. Zheng, J. Gu, H. Li, Experimental study on the effect of different cement content on the improvement of dynamic characteristics of seismic-prone poor soil, (2024). https://doi.org/10.1371/journal.pone.0300849.
  • M.R. Coop, J.H. Atkinson, The mechanics of cemented carbonate sands, Geotechnique 43 (1993) 53–67. https://scholars.cityu.edu.hk/en/publications/the-mechanics-of-cemented-carbonate-sands(ce74debb-f7ae-4b71-831f-dcb463bff66c).html (accessed March 29, 2025).
  • N.C. Consoli, R.A.Q. Samaniego, N.M.K. Villalba, Durability, Strength, and Stiffness of Dispersive Clay–Lime Blends, Journal of Materials in Civil Engineering 28 (2016). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001632.
  • T. Kunito, A. Honda, M. Mashima, S. Hamasato, A Study on the Relationship between Pore Structure and Coefficient of Permeability of Soil Stabilized with Cement, MRS Proceedings 137 (1988) 457–462. https://doi.org/10.1557/PROC-137-457/METRICS.
  • H. Ranaivomanana, A. Razakamanantsoa, Toward a better understanding of the effects of cement treatment on microstructural and hydraulic properties of compacted soils, MATEC Web of Conferences 163 (2018) 06007. https://doi.org/10.1051/MATECCONF/201816306007.
  • A. Abdallah, G. Russo, O. Cuisinier, Statistical and Predictive Analyses of the Strength Development of a Cement-Treated Clayey Soil, Geotechnics 2023, Vol. 3, Pages 465-479 3 (2023) 465–479. https://doi.org/10.3390/GEOTECHNICS3020026.
  • CN Tables, (n.d.). https://www.hec.usace.army.mil/confluence/hmsdocs/hmstrm/cn-tables (accessed August 23, 2023).

Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control

Yıl 2025, Cilt: 36 Sayı: 5, 111 - 148, 01.09.2025
https://doi.org/10.18400/tjce.1603567

Öz

This study investigates the effects of curing period (0, 4, 7, and 28 days), density (1.6 and 1.8 g/cm³), and cement content (1%, 3%, 6%, and 10%) on the behavior of cemented sand. Unconfined compressive strength (UCS) tests assessed strength, while permeability was evaluated through constant head tests. Additionally, ultra-pulse velocity (UPV) testing was used to assess shear modulus (G0) as a nondestructive evaluation method. The findings demonstrate that increasing the cement content and extending the curing duration enhance both strength and shear modulus while reducing permeability. Specifically, a cement content of 10% and a curing period of 28 days result in a significant improvement, with UCS reaching 2.7 MPa and G0 attaining 1.2 MPa. Higher density also enhances strength and G0 but lowers permeability. Hydrological modeling of stormwater systems reveals that increasing cement content elevates surface runoff volume and shifts the soil Curve Number from 61 to 89 (for 1% and 10% cement at 1.8 g/cm³ density, respectively), indicating reduced infiltration capacity and increased runoff potential. Statistical analysis confirmed significant relationships between cement content, curing time, density, and the resulting strength and permeability, with p-values below 5%, indicating strong statistical significance. For urban stormwater systems requiring permeability-strength equilibrium, the 1.8 g/cm3 density, 6% cement, and 7-day curing mix is recommended to support groundwater recharge while maintaining pavement durability.

Kaynakça

  • J. Huang, A.E. Hartemink, Soil and environmental issues in sandy soils, (2020). https://doi.org/10.1016/j.earscirev.2020.103295.
  • A. Bruand, C. Hartmann, G. Lesturgez, Physical properties of tropical sandy soils : a large range of behaviours, (2005).
  • J.G. Bockheim, A.E. Hartemink, J. Huang, Distribution and properties of sandy soils in the conterminous USA – A conceptual thickness model, and taxonomic analysis, Catena (Amst) 195 (2020) 104746. https://doi.org/10.1016/J.CATENA.2020.104746.
  • M. Shahbazi, M. Rowshanzamir, S.M. Abtahi, S.M. Hejazi, Optimization of carpet waste fibers and steel slag particles to reinforce expansive soil using response surface methodology, Appl Clay Sci 142 (2017) 185–192. https://doi.org/10.1016/J.CLAY.2016.11.027.
  • E.C. Brevik, A.E. Hartemink, Early soil knowledge and the birth and development of soil science, Catena (Amst) 83 (2010) 23–33. https://doi.org/10.1016/J.CATENA.2010.06.011.
  • C. McDowell, stabilization of soils with lime, lime-flyash, and other lime reactive materials, Highway Research Board Bulletin (1959).
  • R. Eires, A. Camões, S. Jalali, Ancient Materials and Techniques to Improve the Earthen Building Durability, Key Eng Mater 634 (2015) 357–366. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.634.357.
  • C. Kelley, durability and maintenance of lime-stabilized bases, (1977).
  • R.O. Abd-Al Ftah, B.A. Tayeh, K. Abdelsamie, R.D.A. Hafez, Assessment on structural and mechanical properties of reinforcement concrete beams prepared with luffa cylindrical fibre, Case Studies in Construction Materials 17 (2022) e01283. https://doi.org/10.1016/J.CSCM.2022.E01283.
  • Y.I.A. Aisheh, D.S. Atrushi, M.H. Akeed, S. Qaidi, B.A. Tayeh, Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC), Case Studies in Construction Materials 17 (2022) e01245. https://doi.org/10.1016/J.CSCM.2022.E01245.
  • L.K. Sharma, N.N. Sirdesai, K.M. Sharma, T.N. Singh, Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study, Appl Clay Sci 152 (2018) 183–195. https://doi.org/10.1016/J.CLAY.2017.11.012.
  • H. Verma, A. Ray, R. Rai, T. Gupta, N. Mehta, Ground improvement using chemical methods: A review, Heliyon 7 (2021) e07678. https://doi.org/10.1016/J.HELIYON.2021.E07678.
  • I. Chang, M. Lee, A.T.P. Tran, S. Lee, Y.M. Kwon, J. Im, G.C. Cho, Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices, Transportation Geotechnics 24 (2020) 100385. https://doi.org/10.1016/J.TRGEO.2020.100385.
  • H. Afrin, A Review on Different Types Soil Stabilization Techniques, Habiba Afrin. A Review on Different Types Soil Stabilization Techniques. International Journal of Transportation Engineering and Technology 3 (2017) 19–24. https://doi.org/10.11648/j.ijtet.20170302.12.
  • F.A. Gidebo, H. Yasuhara, N. Kinoshita, Stabilization of expansive soil with agricultural waste additives: a review, International Journal of Geo-Engineering 14 (2023) 1–18. https://doi.org/10.1186/S40703-023-00194-X/TABLES/1.
  • M. Umar, K.A. Kassim, K.T. Ping Chiet, Biological process of soil improvement in civil engineering: A review, Journal of Rock Mechanics and Geotechnical Engineering 8 (2016) 767–774. https://doi.org/10.1016/J.JRMGE.2016.02.004.
  • M. Patil, P.H. Dalal, S. Shreedhar, T.N. Dave, K.K.R. Iyer, Biostabilization techniques and applications in Civil Engineering: State-of-the-Art, Constr Build Mater 309 (2021) 125098. https://doi.org/10.1016/J.CONBUILDMAT.2021.125098.
  • V. Rajoria, S. Kaur, a review on stabilization of soil using bio-enzyme, ijret: International Journal of Research in Engineering and Technology (n.d.) 2321–7308. http://www.ijret.org (accessed June 11, 2023).
  • H. Verma, A. Ray, R. Rai, T. Gupta, N. Mehta, Ground improvement using chemical methods: A review, Heliyon 7 (n.d.) 7678. https://doi.org/10.1016/J.HELIYON.2021.E07678.
  • D. Barman, S.K. Dash, Stabilization of expansive soils using chemical additives: A review, Journal of Rock Mechanics and Geotechnical Engineering 14 (2022) 1319–1342. https://doi.org/10.1016/J.JRMGE.2022.02.011.
  • A.A. Firoozi, C. Guney Olgun, A.A. Firoozi, M.S. Baghini, Fundamentals of soil stabilization, International Journal of Geo-Engineering 8 (2017) 1–16. https://doi.org/10.1186/S40703-017-0064-9/FIGURES/3.
  • A.A.S. Correia, P.D.F. Casaleiro, D.T.R. Figueiredo, M.S.M.R. Moura, M.G. Rasteiro, Key-Parameters in Chemical Stabilization of Soils with Multiwall Carbon Nanotubes, Applied Sciences 2021, Vol. 11, Page 8754 11 (2021) 8754. https://doi.org/10.3390/APP11188754.
  • M.S. Abid, Stabilization of Soil using Chemical Additives, GRD Journal for Engineering | 1 (2016). www.grdjournals.com (accessed June 11, 2023).
  • G.M. Bhatlawande, A.C. Babar, A.A. Darge, A Review on Different Methods of Soil Stabilization, International Journal of Engineering Science and Computing (2019). http://ijesc.org/ (accessed June 11, 2023).
  • M. Laishram, D. Singh, S. Kumar, The Utilization of Industrial Waste as a Stabilizing Agent—A Review, Lecture Notes in Civil Engineering 281 (2023) 239–247. https://doi.org/10.1007/978-981-19-4731-5_22/TABLES/5.
  • E. Zlatanović, N. Marinković, Z. Bonić, N. Romić, S. Djorić-Veljković, D. Cvetković, D. Djordjević, Comparative Study of the Effects of Conventional, Waste, and Alternative Materials on the Geomechanical Properties of Clayey Soil in the Chemical Soil Stabilisation Technique, Applied Sciences 2024, Vol. 14, Page 6249 14 (2024) 6249. https://doi.org/10.3390/APP14146249.
  • J.B. Croft, The Influence of Soil Mineralogical Composition on Cement Stabilization, Https://Doi.Org/10.1680/Geot.1967.17.2.119 17 (2015) 119–135. https://doi.org/10.1680/GEOT.1967.17.2.119.
  • Cement, Building Materials in Civil Engineering (2011) 46–423. https://doi.org/10.1533/9781845699567.46.
  • D. Marchon, R.J. Flatt, Mechanisms of cement hydration, Science and Technology of Concrete Admixtures (2016) 129–145. https://doi.org/10.1016/B978-0-08-100693-1.00008-4.
  • H. Yang, Z. Qian, B. Yue, Z. Xie, Effects of Cement Dosage, Curing Time, and Water Dosage on the Strength of Cement-Stabilized Aeolian Sand Based on Macroscopic and Microscopic Tests, Materials 2024, Vol. 17, Page 3946 17 (2024) 3946. https://doi.org/10.3390/MA17163946.
  • N.C. Consoli, D. Foppa, L. Festugato, K.S. Heineck, Key Parameters for Strength Control of Artificially Cemented Soils, Journal of Geotechnical and Geoenvironmental Engineering 133 (2007) 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197)/ASSET/12F5F147-8951-4DE1-9F0A-F5B3A38FD7E1/ASSETS/GRAPHIC/15.JPG.
  • I. Shooshpasha, R.A. Shirvani, Effect of cement stabilization on geotechnical properties of sandy soils, Geomechanics and Engineering 8 (2015) 17–31. https://doi.org/10.12989/GAE.2015.8.1.017.
  • S. Ahmad, O.S.B. Al-Amoudi, Y.M.H. Mustafa, M. Maslehuddin, M.H. Al-Malack, Stabilization and Solidification of Oil-Contaminated Sandy Soil Using Portland Cement and Supplementary Cementitious Materials, Journal of Materials in Civil Engineering 32 (2020). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003169.
  • N.C. Consoli, R.C. Cruz, M.F. Floss, Variables Controlling Strength of Artificially Cemented Sand: Influence of Curing Time, Journal of Materials in Civil Engineering 23 (2011) 692–696. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000205/ASSET/E83D346D-BC59-489D-B3DB-D8BA079A05DA/ASSETS/IMAGES/LARGE/6.JPG.
  • H. Choo, H. Nam, W. Lee, A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength, J Appl Geophy 147 (2017) 102–108. https://doi.org/10.1016/J.JAPPGEO.2017.10.012.
  • T.S. Amhadi, G.J. Assaf, G. Saygili, G. Loprencipe, Improvement of Pavement Subgrade by Adding Cement and Fly Ash to Natural Desert Sand, Infrastructures 2021, Vol. 6, Page 151 6 (2021) 151. https://doi.org/10.3390/INFRASTRUCTURES6110151.
  • A.F. Cabalar, R.A. Omar, Stabilizing a silt using waste limestone powder, Bulletin of Engineering Geology and the Environment 82 (2023) 1–16. https://doi.org/10.1007/S10064-023-03302-4/FIGURES/21.
  • A.F. Cabalar, Z. Karabash, Influence of Cement Type and Sample Preparation on the Small-Strain Behaviour of Sands, Arab J Sci Eng 44 (2019) 8835–8848. https://doi.org/10.1007/S13369-019-04070-8/FIGURES/21.
  • T.S. Amhadi, G.J. Assaf, Strength and permeability potentials of cement-modified desert sand for roads construction purpose, Innovative Infrastructure Solutions 5 (2020) 1–10. https://doi.org/10.1007/S41062-020-00327-6/FIGURES/14.
  • H. Farshbaf Aghajani, H. Soltani-Jigheh, M. Salimi, S. Karimi, V. Estekanchi, R. Akbarzadeh Ahari, Investigating the strength, hydraulic conductivity, and durability of the CSG (cemented sand-gravel) check dams: a case study in Iran, SN Appl Sci 4 (2022) 1–19. https://doi.org/10.1007/S42452-022-05062-4/TABLES/6.
  • H. Farshbaf Aghajani, H. Soltani-Jigheh, M. Salimi, S. Karimi, V. Estekanchi, R. Akbarzadeh Ahari, Investigating the strength, hydraulic conductivity, and durability of the CSG (cemented sand-gravel) check dams: a case study in Iran, SN Appl Sci 4 (2022) 1–19. https://doi.org/10.1007/S42452-022-05062-4/TABLES/6.
  • S. Shahi, E. Fakhri, H. Yavari, S. Maleki Dizaj, S. Salatin, K. Khezri, Portland Cement: An Overview as a Root Repair Material, Biomed Res Int 2022 (2022) 3314912. https://doi.org/10.1155/2022/3314912.
  • I.M. Padilla Espinosa, N. Barua, R. V. Mohan, Hydrostatic compression and pressure phase transition of major Portland cement constituents – Insights via molecular dynamics modeling, CEMENT 7 (2022) 100017. https://doi.org/10.1016/J.CEMENT.2021.100017.
  • N. Arabi, N. Chelghoum, R. Jauberthie, L. Molez, Formation of C-S-H in calcium hydroxide-blast furnace slag-quartz-water system in autoclaving conditions, 27 (2015) 153–162. https://doi.org/10.1680/adcr.13.00069ï.
  • M.J. McCarthy, T.D. Dyer, Pozzolanas and Pozzolanic Materials, Lea’s Chemistry of Cement and Concrete (2019) 363–467. https://doi.org/10.1016/B978-0-08-100773-0.00009-5.
  • E. John, T. Matschei, D. Stephan, Nucleation seeding with calcium silicate hydrate – A review, Cem Concr Res 113 (2018) 74–85. https://doi.org/10.1016/J.CEMCONRES.2018.07.003.
  • F. Bell, Engineering Treatment of Soils, Engineering Treatment of Soils (1993) 235–245. https://doi.org/10.1201/9781482288971.
  • N.C. Consoli, M.A. Vendruscolo, A. Fonini, F.D. Rosa, Fiber reinforcement effects on sand considering a wide cementation range, Geotextiles and Geomembranes 27 (2009) 196–203. https://doi.org/10.1016/J.GEOTEXMEM.2008.11.005.
  • S.S. Park, Unconfined compressive strength and ductility of fiber-reinforced cemented sand, Constr Build Mater 25 (2011) 1134–1138. https://doi.org/10.1016/J.CONBUILDMAT.2010.07.017.
  • J.R. Prusinski, S. Bhattacharja, Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils, Transp Res Rec 1 (1999) 215–227. https://doi.org/10.3141/1652-28.
  • K.A. Saeed, K.A. Kassim, H. Nur, Fizikalno-kemijska karakterizacija kaolinske gline s dodatkom cementa, Gradjevinar 66 (2014) 513–521. https://doi.org/10.14256/JCE.976.2013.
  • S. Chaiyaput, N. Arwaedo, N. Kingnoi, T. Nghia-Nguyen, J. Ayawanna, Effect of curing conditions on the strength of soil cement, Case Studies in Construction Materials 16 (2022) e01082. https://doi.org/10.1016/J.CSCM.2022.E01082.
  • K.-S. Oh, T.-H. Kim, Dependence of the Material Properties of Lightweight Cemented Soil on the Curing Temperature, Journal of Materials in Civil Engineering 26 (2014). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000940.
  • J.T. Huang, D.W. Airey, Properties of Artificially Cemented Carbonate Sand, Journal of Geotechnical and Geoenvironmental Engineering 124 (1998) 492–499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492).
  • E. da S. Menger, M. Benetti, L. Festugato, L. da S. Ibeiro, R.D. Luza, Hydraulic Conductivity and Compressive Strength of Cemented Soils, Geotechnical and Geological Engineering 38 (2020) 6031–6039. https://doi.org/10.1007/S10706-020-01411-5/TABLES/4.
  • F.C. Loch, O.J. Pejon, Study of Moisture and Cement Rates Influence on Hydraulic Conductivity of a Stabilized Sandy Soil by Means of a Factorial Design of Experiments, Engineering Geology for Society and Territory - Volume 5 (2015) 1333–1335. https://doi.org/10.1007/978-3-319-09048-1_254.
  • N.D. Quang, J.C. Chai, Permeability of lime- and cement-treated clayey soils, Canadian Geotechnical Journal 52 (2015) 1221–1227. https://doi.org/10.1139/CGJ-2014-0134/ASSET/IMAGES/CGJ-2014-0134TAB7.GIF.
  • F.C. Loch, O.J. Pejon, Study of Moisture and Cement Rates Influence on Hydraulic Conductivity of a Stabilized Sandy Soil by Means of a Factorial Design of Experiments, Engineering Geology for Society and Territory - Volume 5 (2015) 1333–1335. https://doi.org/10.1007/978-3-319-09048-1_254.
  • J. Ji, G. Fan, Prediction of the permeability-reducing effect of cement infiltration into sandy soils, Water Supply 17 (2017) 851–858. https://doi.org/10.2166/WS.2016.183.
  • B.T. Luong, H.-H. Tran-Nguyen, Investigation of Microstructure of Dredging Sand Mixing Cement Specimens to Interpret Reduction of Permeability, (2022) 157–166. https://doi.org/10.1061/9780784484012.016.
  • X. Dong, X. Bao, H. Cui, C. Xu, X. Chen, Effects of Cement Treatment on Mechanical Properties and Microstructure of a Granite Residual Soil, Applied Sciences 2022, Vol. 12, Page 12549 12 (2022) 12549. https://doi.org/10.3390/APP122412549.
  • S. Wang, X. He, G. Cai, L. Lang, H. Ma, S. Gong, Z. Niu, Investigation on Water Transformation and Pore Structure of Cement-Stabilized Dredged Sediment Based on NMR Technology, Materials 2022, Vol. 15, Page 3178 15 (2022) 3178. https://doi.org/10.3390/MA15093178.
  • Z. Chong-hui, W. Zeng-hong, Experimental Research on the Variation Regularity of Permeability Coefficient of Cement Soil, Journal of Changjiang River Scientific Research Institute 30 (2013) 59. https://doi.org/10.3969/J.ISSN.1001-5485.2013.07.012.
  • A. Sičáková, M. Kováč, Relationships between Functional Properties of Pervious Concrete, Sustainability 2020, Vol. 12, Page 6318 12 (2020) 6318. https://doi.org/10.3390/SU12166318.
  • N.C. Consoli, F.D. Rosa, A. Fonini, Plate Load Tests on Cemented Soil Layers Overlaying Weaker Soil, Journal of Geotechnical and Geoenvironmental Engineering 135 (2009) 1846–1856. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000158.
  • U.N.D. of E. and S. Affairs, World Population Prospects 2017 - Volume I: Comprehensive Tables, (2021). https://doi.org/10.18356/9789210001014.
  • United Nations, World Population Prospects: The 2017 Revision | DESA Publications, (2017). https://desapublications.un.org/publications/world-population-prospects-2017-revision (accessed March 23, 2025).
  • B.J. Hibbs, J.M. Sharp, Hydrogeological impacts of urbanization, Environmental and Engineering Geoscience 18 (2012) 3–24. https://doi.org/10.2113/GSEEGEOSCI.18.1.3.
  • C.M. Liu, J.W. Chen, Y.S. Hsieh, M.L. Liou, T.H. Chen, Build sponge eco-cities to adapt hydroclimatic hazards, Handbook of Climate Change Adaptation (2015) 1997–2009. https://doi.org/10.1007/978-3-642-38670-1_91.
  • C.E. Wilson, W.F. Hunt, R.J. Winston, P. Smith, Comparison of Runoff Quality and Quantity from a Commercial Low-Impact and Conventional Development in Raleigh, North Carolina, Journal of Environmental Engineering 141 (2015) 05014005. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000842/ASSET/56E283CA-1032-4EC7-90C3-639912991EC4/ASSETS/IMAGES/LARGE/FIGURE8.JPG.
  • M.E. Dietz, J.C. Clausen, Stormwater runoff and export changes with development in a traditional and low impact subdivision, J Environ Manage 87 (2008) 560–566. https://doi.org/10.1016/J.JENVMAN.2007.03.026.
  • L.-M. Chen, J.-W. Chen, T.-H. Chen, T. Lecher, P.C. Davidson, Measurement of Permeability and Comparison of Pavements, (2019). https://doi.org/10.3390/w11030444.
  • Low Impact Development (LID), (2000).
  • S. Planning Roundtable, C. Bay Program, Prepared by the Prepared for the BETTER SITE DESIGN: A Handbook for Changing Development Rules in Your Community, (n.d.).
  • U. Environmental Protection Agency, O. of Water, Stormwater Best Management Practice Permeable Pavements Minimum Measure: Post Construction Stormwater Management in New Development and Redevelopment Subcategory: Infiltration, (n.d.). https://www.epa.gov/npdes (accessed June 13, 2023).
  • ASTM, ASTM C150/C150M-21: Standard Specification for Portland Cement, ASTM International D3699 (2021).
  • N.C. Consoli, M.A. Vendruscolo, A. Fonini, F.D. Rosa, Fiber reinforcement effects on sand considering a wide cementation range, Geotextiles and Geomembranes 27 (2009) 196–203. https://doi.org/10.1016/J.GEOTEXMEM.2008.11.005.
  • N.C. Consoli, F.D. Rosa, A. Fonini, Plate Load Tests on Cemented Soil Layers Overlaying Weaker Soil, Journal of Geotechnical and Geoenvironmental Engineering 135 (2009) 1846–1856. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000158/ASSET/2A7E7EEB-7A9B-48CB-858D-E2AC303E7EF7/ASSETS/IMAGES/LARGE/15.JPG.
  • ASTM C511-03, Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes, American Society for Testing and Materials (2003).
  • Test Method for Permeability of Granular Soils (Constant Head), (2022). https://doi.org/10.1520/D2434-22.
  • ASTM International, ASTM D1633 - 00(2007) Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders, ASTM International, West Conshohocken, PA, USA, (2007).
  • Test Method for Unconfined Compressive Strength of Cohesive Soil, (2006). https://doi.org/10.1520/D2166-06.
  • Test Method for Pulse Velocity Through Concrete, (2002). https://doi.org/10.1520/C0597-02.
  • J. V. Kozubal, T. Kania, A.S. Tarawneh, A. Hassanat, R. Lawal, Ultrasonic assessment of cement-stabilized soils: Deep learning experimental results, Measurement 223 (2023) 113793. https://doi.org/10.1016/J.MEASUREMENT.2023.113793.
  • W.S. Sarro, G.M. Assis, G.C.S. Ferreira, Experimental investigation of the UPV wavelength in compacted soil, Constr Build Mater 272 (2021) 121834. https://doi.org/10.1016/J.CONBUILDMAT.2020.121834.
  • M. Hanafi, I. Javed, A. Ekinci, Evaluating the strength, durability and porosity characteristics of alluvial clay stabilized with marble dust as a sustainable binder, Results in Engineering 25 (2025) 103978. https://doi.org/10.1016/J.RINENG.2025.103978.
  • L. Al-Subari, A. Ekinci, E. Aydın, The utilization of waste rubber tire powder to improve the mechanical properties of cement-clay composites, Constr Build Mater 300 (2021) 124306. https://doi.org/10.1016/J.CONBUILDMAT.2021.124306.
  • N. Sathiparan, W.G.B.S. Jayasundara, K.S.D. Samarakoon, B. Banujan, Prediction of characteristics of cement stabilized earth blocks using non-destructive testing: Ultrasonic pulse velocity and electrical resistivity, Materialia (Oxf) 29 (2023) 101794. https://doi.org/10.1016/J.MTLA.2023.101794.
  • J.A. Oke, H. Abuel-Naga, Assessment of a Non-Destructive Testing Method Using Ultrasonic Pulse Velocity to Determine the Compressive Strength of Rubberized Bricks Produced with Lime Kiln Dust Waste, Geotechnics 2023, Vol. 3, Pages 1294-1308 3 (2023) 1294–1308. https://doi.org/10.3390/GEOTECHNICS3040070.
  • Y. Bai, Y. Li, R. Zhang, N. Zhao, X. Zeng, Comprehensive performance evaluation system based on environmental and economic benefits for optimal allocation of LID facilities, Water (Switzerland) 11 (2019). https://doi.org/10.3390/W11020341.
  • T. Cui, Y. Long, Y. Wang, Choosing the LID for Urban Storm Management in the South of Taiyuan Basin by Comparing the Storm Water Reduction Efficiency, Water 2019, Vol. 11, Page 2583 11 (2019) 2583. https://doi.org/10.3390/W11122583.
  • M.A. Ismail, H.A. Joer, M.F. Randolph, Sample Preparation Technique for Artificially Cemented Soils, Geotechnical Testing Journal 23 (2000) 171–177. https://doi.org/10.1520/GTJ11041J.
  • L. Zhang, Y. Li, X. Wei, X. Liang, J. Zhang, X. Li, Unconfined Compressive Strength of Cement-Stabilized Qiantang River Silty Clay, Materials 2024, Vol. 17, Page 1082 17 (2024) 1082. https://doi.org/10.3390/MA17051082.
  • H.D. Do, V.N. Pham, H.H. Nguyen, P.N. Huynh, J. Han, Prediction of Unconfined Compressive Strength and Flexural Strength of Cement-Stabilized Sandy Soils: A Case Study in Vietnam, Geotechnical and Geological Engineering 39 (2021) 4947–4962. https://doi.org/10.1007/S10706-021-01805-Z/FIGURES/14.
  • M.A. Ashraf, S.M.S. Rahman, M.O. Faruk, M.A. Bashar, Determination of Optimum Cement Content for Stabilization of Soft Soil and Durability Analysis of Soil Stabilized with Cement, American Journal of Civil Engineering 2018, Volume 6, Page 39 6 (2018) 39–43. https://doi.org/10.11648/J.AJCE.20180601.17.
  • A.S. Muhammed, K. Kassim, M.U. Zango, C.S. Chong, Bio-cementation of Sandy Soil at different Relative Density, (2020).
  • Y. Zhao Id, F. Qiao, F. Meng, Z. Zheng, J. Gu, H. Li, Experimental study on the effect of different cement content on the improvement of dynamic characteristics of seismic-prone poor soil, (2024). https://doi.org/10.1371/journal.pone.0300849.
  • M.R. Coop, J.H. Atkinson, The mechanics of cemented carbonate sands, Geotechnique 43 (1993) 53–67. https://scholars.cityu.edu.hk/en/publications/the-mechanics-of-cemented-carbonate-sands(ce74debb-f7ae-4b71-831f-dcb463bff66c).html (accessed March 29, 2025).
  • N.C. Consoli, R.A.Q. Samaniego, N.M.K. Villalba, Durability, Strength, and Stiffness of Dispersive Clay–Lime Blends, Journal of Materials in Civil Engineering 28 (2016). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001632.
  • T. Kunito, A. Honda, M. Mashima, S. Hamasato, A Study on the Relationship between Pore Structure and Coefficient of Permeability of Soil Stabilized with Cement, MRS Proceedings 137 (1988) 457–462. https://doi.org/10.1557/PROC-137-457/METRICS.
  • H. Ranaivomanana, A. Razakamanantsoa, Toward a better understanding of the effects of cement treatment on microstructural and hydraulic properties of compacted soils, MATEC Web of Conferences 163 (2018) 06007. https://doi.org/10.1051/MATECCONF/201816306007.
  • A. Abdallah, G. Russo, O. Cuisinier, Statistical and Predictive Analyses of the Strength Development of a Cement-Treated Clayey Soil, Geotechnics 2023, Vol. 3, Pages 465-479 3 (2023) 465–479. https://doi.org/10.3390/GEOTECHNICS3020026.
  • CN Tables, (n.d.). https://www.hec.usace.army.mil/confluence/hmsdocs/hmstrm/cn-tables (accessed August 23, 2023).
Toplam 103 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliğinde Zemin Mekaniği, Su Kaynakları Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

İsraf Javed 0000-0003-4323-6892

Abdullah Ekinci 0000-0002-6787-9983

Bertuğ Akıntuğ 0000-0001-6206-4315

Erken Görünüm Tarihi 9 Mayıs 2025
Yayımlanma Tarihi 1 Eylül 2025
Gönderilme Tarihi 18 Aralık 2024
Kabul Tarihi 2 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 36 Sayı: 5

Kaynak Göster

APA Javed, İ., Ekinci, A., & Akıntuğ, B. (2025). Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control. Turkish Journal of Civil Engineering, 36(5), 111-148. https://doi.org/10.18400/tjce.1603567
AMA Javed İ, Ekinci A, Akıntuğ B. Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control. tjce. Eylül 2025;36(5):111-148. doi:10.18400/tjce.1603567
Chicago Javed, İsraf, Abdullah Ekinci, ve Bertuğ Akıntuğ. “Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control”. Turkish Journal of Civil Engineering 36, sy. 5 (Eylül 2025): 111-48. https://doi.org/10.18400/tjce.1603567.
EndNote Javed İ, Ekinci A, Akıntuğ B (01 Eylül 2025) Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control. Turkish Journal of Civil Engineering 36 5 111–148.
IEEE İ. Javed, A. Ekinci, ve B. Akıntuğ, “Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control”, tjce, c. 36, sy. 5, ss. 111–148, 2025, doi: 10.18400/tjce.1603567.
ISNAD Javed, İsraf vd. “Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control”. Turkish Journal of Civil Engineering 36/5 (Eylül2025), 111-148. https://doi.org/10.18400/tjce.1603567.
JAMA Javed İ, Ekinci A, Akıntuğ B. Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control. tjce. 2025;36:111–148.
MLA Javed, İsraf vd. “Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control”. Turkish Journal of Civil Engineering, c. 36, sy. 5, 2025, ss. 111-48, doi:10.18400/tjce.1603567.
Vancouver Javed İ, Ekinci A, Akıntuğ B. Utilization of Artificially Cemented Sand for Porous Pavement Applications and Analysis of Runoff Control. tjce. 2025;36(5):111-48.