Araştırma Makalesi
BibTex RIS Kaynak Göster

Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane

Yıl 2024, , 1 - 5, 30.06.2024
https://doi.org/10.47000/tjmcs.1403706

Öz

We introduce four ordinary differential equations for a fixed natural parametrization of a spacelike curve $C$ in the Lorentz plane. The relationships between these differential equations is studied through the curvature of $C$.

Kaynakça

  • Abe, N., Nakanishi, Y., Yamaguchi, S., Circles and spheres in pseudo-Riemannian geometry, Aequationes Math., 39(2-3)(1990), 134–145.
  • Castro, I., Castro-Infantes, I., Castro-Infantes, J., Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers, Open Math. 16(2018), 747–766.
  • Castro, I., Castro-Infantes, I., Castro-Infantes, J., Curves in the Lorentz-Minkowski plane with curvature depending on their position, Open Math., 18(2020), 749–770.
  • Crasmareanu, M., The flow-curvature of spacelike parametrized curves in the Lorentz plane, Proc. Int. Geom. Cent., 15(2)(2022), 101–109.
  • Crasmareanu, M., The adjoint map of Euclidean plane curves and curvature problems, Tamkang J. Math., 55(2024), (in press).
  • Saloom, A., Tari, F., Curves in the Minkowski plane and their contact with pseudo-circles, Geom. Dedicata, 159(2012), 109–124.
  • Olver Peter J., Equivalence, Invariants, and Symmetry, Cambridge University Press, 1995.
  • Woolgar, E., Xie, R., Self-similar curve shortening flow in hyperbolic 2-space, Proc. Am. Math. Soc., 150(3)(2022), 1301–1319.
Yıl 2024, , 1 - 5, 30.06.2024
https://doi.org/10.47000/tjmcs.1403706

Öz

Kaynakça

  • Abe, N., Nakanishi, Y., Yamaguchi, S., Circles and spheres in pseudo-Riemannian geometry, Aequationes Math., 39(2-3)(1990), 134–145.
  • Castro, I., Castro-Infantes, I., Castro-Infantes, J., Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers, Open Math. 16(2018), 747–766.
  • Castro, I., Castro-Infantes, I., Castro-Infantes, J., Curves in the Lorentz-Minkowski plane with curvature depending on their position, Open Math., 18(2020), 749–770.
  • Crasmareanu, M., The flow-curvature of spacelike parametrized curves in the Lorentz plane, Proc. Int. Geom. Cent., 15(2)(2022), 101–109.
  • Crasmareanu, M., The adjoint map of Euclidean plane curves and curvature problems, Tamkang J. Math., 55(2024), (in press).
  • Saloom, A., Tari, F., Curves in the Minkowski plane and their contact with pseudo-circles, Geom. Dedicata, 159(2012), 109–124.
  • Olver Peter J., Equivalence, Invariants, and Symmetry, Cambridge University Press, 1995.
  • Woolgar, E., Xie, R., Self-similar curve shortening flow in hyperbolic 2-space, Proc. Am. Math. Soc., 150(3)(2022), 1301–1319.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Makaleler
Yazarlar

Mircea Crasmareanu 0000-0002-5230-2751

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 12 Aralık 2023
Kabul Tarihi 14 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Crasmareanu, M. (2024). Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane. Turkish Journal of Mathematics and Computer Science, 16(1), 1-5. https://doi.org/10.47000/tjmcs.1403706
AMA Crasmareanu M. Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane. TJMCS. Haziran 2024;16(1):1-5. doi:10.47000/tjmcs.1403706
Chicago Crasmareanu, Mircea. “Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane”. Turkish Journal of Mathematics and Computer Science 16, sy. 1 (Haziran 2024): 1-5. https://doi.org/10.47000/tjmcs.1403706.
EndNote Crasmareanu M (01 Haziran 2024) Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane. Turkish Journal of Mathematics and Computer Science 16 1 1–5.
IEEE M. Crasmareanu, “Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane”, TJMCS, c. 16, sy. 1, ss. 1–5, 2024, doi: 10.47000/tjmcs.1403706.
ISNAD Crasmareanu, Mircea. “Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane”. Turkish Journal of Mathematics and Computer Science 16/1 (Haziran 2024), 1-5. https://doi.org/10.47000/tjmcs.1403706.
JAMA Crasmareanu M. Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane. TJMCS. 2024;16:1–5.
MLA Crasmareanu, Mircea. “Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane”. Turkish Journal of Mathematics and Computer Science, c. 16, sy. 1, 2024, ss. 1-5, doi:10.47000/tjmcs.1403706.
Vancouver Crasmareanu M. Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane. TJMCS. 2024;16(1):1-5.