BibTex RIS Kaynak Göster

On Morgan-Voyce Polynomials Approximation For Linear Differential Equations

Yıl 2014, Volume 2, 2014, 1 - 10, 26.05.2016

Öz

In this paper, a matrix method for approximately solving certain linear differential equations is presented. This method is called Morgan-Voyce matrix method and converts a linear differential equation into a matrix equation. Then, the equation reduces to a matrix equation corresponding to a system of linear algebraic equations with unknown Morgan-Voyce coefficients. The examples are included to demonstrate the applicability of the technique.

Kaynakça

  • Ş. Yüzbaşı, N. Şahin, M. Sezer. Numerical solutions of systems of linear Fredholm integrodifferential equations with Bessel Polynomial bases. Computers&Mathematics with Applications, pp. 3079-3096, 22 April 2011.
  • M. N. S. Swamy. Further properties of Morgan-Voyce Polynomials. Fibonacci Quarterly, Vol. 6, No. 2, pp. 167-175, Apr. 1968.
  • H. H. Sorkun, S. Yalçınbas. Approximate solutions of linear Volterra integral equation systems with variable coefficients. Appl. Math. Modell., doi:10.1016/j.apm.2010.02.034., (2010).
  • A. Akyüz-Daşçıoğlu, M. Sezer. Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations. J. Franklin Ins., vol. 342, pp. 688-701, (2005).
  • M. Sezer and A. Akyüz-Daşcıoğlu. A Taylor method for numerical solution of generalized pantograph equations with linear functional argument. J. Comput. Appl. Math., vol. 200, pp. 217-225, (2007).
  • M. Sezer. A method for the approximate solution of the second order linear differential equations in terms of Taylor polynomials. Int J Math Educ Sci Technol., vol. 27, pp. 821-834, (1996).
  • M. Sezer, S. Yalçınbaş, and N. Şahin Approximate solution of multi-pantograph equation with variable coefficients J Comput Appl Math, vol. 214, pp. 406-416, (2008).
Yıl 2014, Volume 2, 2014, 1 - 10, 26.05.2016

Öz

Kaynakça

  • Ş. Yüzbaşı, N. Şahin, M. Sezer. Numerical solutions of systems of linear Fredholm integrodifferential equations with Bessel Polynomial bases. Computers&Mathematics with Applications, pp. 3079-3096, 22 April 2011.
  • M. N. S. Swamy. Further properties of Morgan-Voyce Polynomials. Fibonacci Quarterly, Vol. 6, No. 2, pp. 167-175, Apr. 1968.
  • H. H. Sorkun, S. Yalçınbas. Approximate solutions of linear Volterra integral equation systems with variable coefficients. Appl. Math. Modell., doi:10.1016/j.apm.2010.02.034., (2010).
  • A. Akyüz-Daşçıoğlu, M. Sezer. Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations. J. Franklin Ins., vol. 342, pp. 688-701, (2005).
  • M. Sezer and A. Akyüz-Daşcıoğlu. A Taylor method for numerical solution of generalized pantograph equations with linear functional argument. J. Comput. Appl. Math., vol. 200, pp. 217-225, (2007).
  • M. Sezer. A method for the approximate solution of the second order linear differential equations in terms of Taylor polynomials. Int J Math Educ Sci Technol., vol. 27, pp. 821-834, (1996).
  • M. Sezer, S. Yalçınbaş, and N. Şahin Approximate solution of multi-pantograph equation with variable coefficients J Comput Appl Math, vol. 214, pp. 406-416, (2008).
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA22TA74YU
Bölüm Makaleler
Yazarlar

Özgül İlhan Bu kişi benim

Niyazi Şahin Bu kişi benim

Yayımlanma Tarihi 26 Mayıs 2016
Yayımlandığı Sayı Yıl 2014 Volume 2, 2014

Kaynak Göster

APA İlhan, Ö., & Şahin, N. (2016). On Morgan-Voyce Polynomials Approximation For Linear Differential Equations. Turkish Journal of Mathematics and Computer Science, 2(1), 1-10.
AMA İlhan Ö, Şahin N. On Morgan-Voyce Polynomials Approximation For Linear Differential Equations. TJMCS. Mayıs 2016;2(1):1-10.
Chicago İlhan, Özgül, ve Niyazi Şahin. “On Morgan-Voyce Polynomials Approximation For Linear Differential Equations”. Turkish Journal of Mathematics and Computer Science 2, sy. 1 (Mayıs 2016): 1-10.
EndNote İlhan Ö, Şahin N (01 Mayıs 2016) On Morgan-Voyce Polynomials Approximation For Linear Differential Equations. Turkish Journal of Mathematics and Computer Science 2 1 1–10.
IEEE Ö. İlhan ve N. Şahin, “On Morgan-Voyce Polynomials Approximation For Linear Differential Equations”, TJMCS, c. 2, sy. 1, ss. 1–10, 2016.
ISNAD İlhan, Özgül - Şahin, Niyazi. “On Morgan-Voyce Polynomials Approximation For Linear Differential Equations”. Turkish Journal of Mathematics and Computer Science 2/1 (Mayıs 2016), 1-10.
JAMA İlhan Ö, Şahin N. On Morgan-Voyce Polynomials Approximation For Linear Differential Equations. TJMCS. 2016;2:1–10.
MLA İlhan, Özgül ve Niyazi Şahin. “On Morgan-Voyce Polynomials Approximation For Linear Differential Equations”. Turkish Journal of Mathematics and Computer Science, c. 2, sy. 1, 2016, ss. 1-10.
Vancouver İlhan Ö, Şahin N. On Morgan-Voyce Polynomials Approximation For Linear Differential Equations. TJMCS. 2016;2(1):1-10.