$D_{i}-$Darboux Slant Helices on Surface
Year 2024,
Volume: 16 Issue: 2, 386 - 399, 31.12.2024
Akın Alkan
,
Hüseyin Kocayiğit
,
Tuba Ağırman Aydın
Abstract
In this study, we consider $D_{i}$-Darboux slant helices which are new surface curves on an oriented surface. We give some characterizations for such curves according to the Darboux frame, OD-frame, ND-frame, RD-frame, and obtain axes of the $D_{i}$-Darboux slant helices. Moreover, the position vectors of the $D_{i}$-Darboux slant helices are obtained.
References
-
Ali, A.T., Position vectors of slant helices in Euclidean space E3, J. Egyptian Math. Soc., 20(2012) 1–6.
-
Alkan, A., Kocayiğit, H., Ağırman Aydın, T., New moving frames for the curves lying on a surface, Sigma Journal of Engineering and Natural Sciences, 42(4)(2024), 2023–2029.
-
Babaarslan, M., Tandogan, Y.A., Yayli, Y., A note on Bertrand curves and constant slope surfaces according to Darboux frame, Journal of Advanced Mathematical Studies, 5(1)(2012), 87–97.
-
Babaarslan, M., Yayli, Y., On helices and Bertrand curves in Euclidean 3-space, Mathematical and Computational Applications, 18(1)(2013), 1–11.
-
Barros, M., General helices and a theorem of Lancret, Proc Amer Math Soc., 125(5)(1997), 1503–1509.
-
Doğan, F., Yaylı Y., On isophote curves and their characterizations, Turk J. Math., 39(2015), 650–664.
-
Hananoi, S., Ito, N., Izumiya, S., Spherical Darboux images of curves on surfaces, Beitr Algebra Geom., 56(2015), 575–585.
-
Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk J. Math., 28(2004), 153–163.
-
Kula, L., Yaylı, Y., On slant helix and its spherical indicatrix, Applied Mathematics and Computation, 169(1)(2005), 600–607.
-
Macit, N., Düldül, M., Relatively normal-slant helices lying on a surface and their characterizations, Hacettepe Journal of Mathematics and Statistics, 46(3)(2017), 397–408.
-
Önder, M., Helices associated to helical curves, relatively normal-slant helices and isophote curves, arXiv preprint arXiv:2201.09684., (2022).
-
Puig-Pey, J., G´alvez, A., Iglesias, A., Helical curves on surfaces for computer-aided geometric design and manufacturing, in: Computational Science and Its Applications-ICCSA Part II, 771-778. in: Lecture Notes in Comput Sci Vol. 3044, Springer, Berlin, (2004).
-
Zıplar, E., Şenol, A., Yaylı, Y., On Darboux helices in Euclidean 3-space, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 12(3)(2012), 73–80.
Year 2024,
Volume: 16 Issue: 2, 386 - 399, 31.12.2024
Akın Alkan
,
Hüseyin Kocayiğit
,
Tuba Ağırman Aydın
References
-
Ali, A.T., Position vectors of slant helices in Euclidean space E3, J. Egyptian Math. Soc., 20(2012) 1–6.
-
Alkan, A., Kocayiğit, H., Ağırman Aydın, T., New moving frames for the curves lying on a surface, Sigma Journal of Engineering and Natural Sciences, 42(4)(2024), 2023–2029.
-
Babaarslan, M., Tandogan, Y.A., Yayli, Y., A note on Bertrand curves and constant slope surfaces according to Darboux frame, Journal of Advanced Mathematical Studies, 5(1)(2012), 87–97.
-
Babaarslan, M., Yayli, Y., On helices and Bertrand curves in Euclidean 3-space, Mathematical and Computational Applications, 18(1)(2013), 1–11.
-
Barros, M., General helices and a theorem of Lancret, Proc Amer Math Soc., 125(5)(1997), 1503–1509.
-
Doğan, F., Yaylı Y., On isophote curves and their characterizations, Turk J. Math., 39(2015), 650–664.
-
Hananoi, S., Ito, N., Izumiya, S., Spherical Darboux images of curves on surfaces, Beitr Algebra Geom., 56(2015), 575–585.
-
Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk J. Math., 28(2004), 153–163.
-
Kula, L., Yaylı, Y., On slant helix and its spherical indicatrix, Applied Mathematics and Computation, 169(1)(2005), 600–607.
-
Macit, N., Düldül, M., Relatively normal-slant helices lying on a surface and their characterizations, Hacettepe Journal of Mathematics and Statistics, 46(3)(2017), 397–408.
-
Önder, M., Helices associated to helical curves, relatively normal-slant helices and isophote curves, arXiv preprint arXiv:2201.09684., (2022).
-
Puig-Pey, J., G´alvez, A., Iglesias, A., Helical curves on surfaces for computer-aided geometric design and manufacturing, in: Computational Science and Its Applications-ICCSA Part II, 771-778. in: Lecture Notes in Comput Sci Vol. 3044, Springer, Berlin, (2004).
-
Zıplar, E., Şenol, A., Yaylı, Y., On Darboux helices in Euclidean 3-space, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 12(3)(2012), 73–80.