Araştırma Makalesi
BibTex RIS Kaynak Göster

FUKUSHIMA NÜKLEER SANTRALI KAZASI SONRASI TÜRKIYE IÇIN RADYOLOJIK DOZLARIN ATMOSFERIK DAĞILIM MODELI KULLANARAK DEĞERLENDIRILMESI

Yıl 2018, Cilt: 30 Sayı: 1, 53 - 62, 26.06.2018

Öz




Fukushima
Nükleer santral Kazasının Anadolu Yarımadası üzerindeki etkileri üç farklı
kaynak terim ile atmosferik dağılım modeli kullanılarak araştırılmıştır.. 131I parçacıklarının
haca konsantrasyon değerleri  0.1 mBqm-3 ile 0.5
mBqm-3,  137Cs değerleri 0.01 mBq m-3 ile 0.05 mBqm-3,  for 131I
gaz değerleri  1 mBqm-3 ile 10 mBqm-3arasındadır. Bulunan değerler ölçüm değerleriyle
kıyaslanmış ve bu değerler kullanılarak Anadolu Yarımadası için radyolojik doz
değerleri hesaplanmıştır. Bulunan efektif doz değerleri Fukushima Nükleer Güç
Santrali Kazasının etkilerinin Çernobil Nükleer Güç Santrali ile
kıyaslandığında oldukça sınırlı olduğunu göstermektedir.




Kaynakça

  • Chino, M, Nakayama, H, Nagai, H, Terada, H, Katata, G and Yamazawa, H. Preliminary estimation of release amounts of 131I and 137Cs Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into atmosphere. Journal of Nuclear Science and Technology, Vol. 48: 1129–1134, 2011. doi:10.1080/18811248.2011.9711799
  • Draxler R.R, Stunder B., Rolph G., Stein A., Taylor A.,Hysplit 4 user's guide (Version 4.9), NOAA, Silver Spring, MD, 2009.
  • Draxler R.R., Hess G.D., (1997). Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, pp 24, Silver Spring, MD.
  • Eckerman KF, Ryman JC. Federal guidance report no. 12 external exposure to radionuclides. Air, Water, and Soil for U.S. Oak Ridge National Laboratory Environmental Protection Agency's Office of Radiation and Indoor Air; 1993.
  • Eckerman K.F. and Sjoreen A.L. (2006). Radiological Toolbox User’s Manual, Oak Ridge National Laboratory U.S. Department of Energy
  • Evangeliou N., Balkanskia Y., Cozica A. , Møller A.P., (2014), Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from Chernobyl: A modeling study for radiocaesium (134Cs & 137Cs Cs), Environment International, Vol. 64, Pages 17–27, 2014. doi:10.1016/j.envint.2013.11.020
  • Gungor E., Gungor N., Yuksel A., Bag G., and Orhan N., (2014). Fukushima Radionuclides At Air Filter And Rain Water Samples Collected From Istanbul And Their Atmospheric Removal Time, Radiation Protection Dosimetry (2014), Vol. 158, No. 2, pp. 195 –200, doi:10.1093/rpd/nct205.
  • ICRP 72. (1995). Age-dependent Doses to the Members of the Public from Intake of Radionuclides - Part 5 Compilation of Ingestion and Inhalation Coefficients. ICRP Publication 72. Ann. ICRP 26 (1).
  • IAEA SRS 53. Derivation of the Source Term and Analysis of the Radiological Consequences of Research Reactor Accidents, Safety Report Series No:53 ISBN 978–92–0–109707–1, Vienna, 2008.
  • INES/IAEA. The international nuclear and radiological event scale. Vienna: International Atomic Energy Agency, 2008.
  • IAEA RARS 1239. (2006). Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience / report of the Chernobyl Forum Expert Group, Radiological assessment reports series No: 1239, (ISSN 1020-6566) ISBN 92–0–114705–8, Vienna
  • Katata G., et al. ,Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model. Atmospheric Chemistry and Physics, Vol.14 14725–14832, 2014.doi:10.5194/acpd-14-14725-2014
  • Robinson C.A. (1996). Generalased habit data for radiological assessments, NRPB-M636 Chilton.
  • Steinhauser, G., Brandl, A., and Johnson, T. E., Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts, Science of The Total Environment, Vol:470–471, 800–817, 2014. doi : 10.1016/j.scitotenv.2013.10.029S
  • Simsek V., Pozzoli L., Unal A., Kindap T. , Karaca M., (2014). Simulation of 137Cs transport and deposition after the Chernobyl Nuclear Power Plant accident and radiological doses over the Anatolian Peninsula, Science of the Total Environment 499 (2014) 74–88, http://dx.doi.org/10.1016/j.scitotenv.2014.08.038
  • Thakur, P., S. Ballard, R. Nelson., An overview of Fukushima radionuclides measured in the northern hemisphere, Science of the Total Environment, (Aug 1: 458–460; 577–613. doi: 10.1016/j.scitotenv.2013.03.105. Epub May 22, 2013.
  • Terada H., Katata G., Chino M., Nagai H.,Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion.,J Environ Radioact. 2012 Oct;112:141-54. doi: 10.1016/j.jenvrad.2012.05.023
  • UNSCEAR. (1988). United Nations Scientific Committee on the Effects of Atomic Radiation 1988 Report to the General Assembly, with Annexes
  • http://www.arl.noaa.gov/HYSPLIT_info.php
  • https://ready.arl.noaa.gov/READY_fdnpp.php

ESTIMATION OF RADIOLOGICAL DOSES OVER TURKEY BY USING ATMOSPHERIC DISPERSION MODEL AFTER FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT

Yıl 2018, Cilt: 30 Sayı: 1, 53 - 62, 26.06.2018

Öz

The
effects of Fukushima Nuclear Power Plant accident over Anatolian Peninsula were
investigated by using an atmospheric dispersion model with three different
source terms. Air concentration amounts for 131I particles over
Turkey were found between 0.1 mBqm-3 and 0.5 mBqm-3, for 137Cs
between 0.01 mBq m-3 and 0.05 mBqm-3, and  for 131I gas between  1 mBqm-3 and 10 mBqm-3.
Results were compared with the measured values. The radiological doses were
calculated over Anatolian Peninsula by using air concentration values simulated
by atmospheric model. In addition the effective doses were found around nSv
which shows that Fukushima Nuclear Power Plant accident has limited effects
compared to Chernobyl Power Plant accident.

Kaynakça

  • Chino, M, Nakayama, H, Nagai, H, Terada, H, Katata, G and Yamazawa, H. Preliminary estimation of release amounts of 131I and 137Cs Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into atmosphere. Journal of Nuclear Science and Technology, Vol. 48: 1129–1134, 2011. doi:10.1080/18811248.2011.9711799
  • Draxler R.R, Stunder B., Rolph G., Stein A., Taylor A.,Hysplit 4 user's guide (Version 4.9), NOAA, Silver Spring, MD, 2009.
  • Draxler R.R., Hess G.D., (1997). Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, pp 24, Silver Spring, MD.
  • Eckerman KF, Ryman JC. Federal guidance report no. 12 external exposure to radionuclides. Air, Water, and Soil for U.S. Oak Ridge National Laboratory Environmental Protection Agency's Office of Radiation and Indoor Air; 1993.
  • Eckerman K.F. and Sjoreen A.L. (2006). Radiological Toolbox User’s Manual, Oak Ridge National Laboratory U.S. Department of Energy
  • Evangeliou N., Balkanskia Y., Cozica A. , Møller A.P., (2014), Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from Chernobyl: A modeling study for radiocaesium (134Cs & 137Cs Cs), Environment International, Vol. 64, Pages 17–27, 2014. doi:10.1016/j.envint.2013.11.020
  • Gungor E., Gungor N., Yuksel A., Bag G., and Orhan N., (2014). Fukushima Radionuclides At Air Filter And Rain Water Samples Collected From Istanbul And Their Atmospheric Removal Time, Radiation Protection Dosimetry (2014), Vol. 158, No. 2, pp. 195 –200, doi:10.1093/rpd/nct205.
  • ICRP 72. (1995). Age-dependent Doses to the Members of the Public from Intake of Radionuclides - Part 5 Compilation of Ingestion and Inhalation Coefficients. ICRP Publication 72. Ann. ICRP 26 (1).
  • IAEA SRS 53. Derivation of the Source Term and Analysis of the Radiological Consequences of Research Reactor Accidents, Safety Report Series No:53 ISBN 978–92–0–109707–1, Vienna, 2008.
  • INES/IAEA. The international nuclear and radiological event scale. Vienna: International Atomic Energy Agency, 2008.
  • IAEA RARS 1239. (2006). Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience / report of the Chernobyl Forum Expert Group, Radiological assessment reports series No: 1239, (ISSN 1020-6566) ISBN 92–0–114705–8, Vienna
  • Katata G., et al. ,Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model. Atmospheric Chemistry and Physics, Vol.14 14725–14832, 2014.doi:10.5194/acpd-14-14725-2014
  • Robinson C.A. (1996). Generalased habit data for radiological assessments, NRPB-M636 Chilton.
  • Steinhauser, G., Brandl, A., and Johnson, T. E., Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts, Science of The Total Environment, Vol:470–471, 800–817, 2014. doi : 10.1016/j.scitotenv.2013.10.029S
  • Simsek V., Pozzoli L., Unal A., Kindap T. , Karaca M., (2014). Simulation of 137Cs transport and deposition after the Chernobyl Nuclear Power Plant accident and radiological doses over the Anatolian Peninsula, Science of the Total Environment 499 (2014) 74–88, http://dx.doi.org/10.1016/j.scitotenv.2014.08.038
  • Thakur, P., S. Ballard, R. Nelson., An overview of Fukushima radionuclides measured in the northern hemisphere, Science of the Total Environment, (Aug 1: 458–460; 577–613. doi: 10.1016/j.scitotenv.2013.03.105. Epub May 22, 2013.
  • Terada H., Katata G., Chino M., Nagai H.,Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion.,J Environ Radioact. 2012 Oct;112:141-54. doi: 10.1016/j.jenvrad.2012.05.023
  • UNSCEAR. (1988). United Nations Scientific Committee on the Effects of Atomic Radiation 1988 Report to the General Assembly, with Annexes
  • http://www.arl.noaa.gov/HYSPLIT_info.php
  • https://ready.arl.noaa.gov/READY_fdnpp.php
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Articles
Yazarlar

Volkan Şimşek

Yayımlanma Tarihi 26 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 1

Kaynak Göster

APA Şimşek, V. (2018). ESTIMATION OF RADIOLOGICAL DOSES OVER TURKEY BY USING ATMOSPHERIC DISPERSION MODEL AFTER FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT. Turkish Journal of Nuclear Sciences, 30(1), 53-62.
AMA Şimşek V. ESTIMATION OF RADIOLOGICAL DOSES OVER TURKEY BY USING ATMOSPHERIC DISPERSION MODEL AFTER FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT. Turkish Journal of Nuclear Sciences. Haziran 2018;30(1):53-62.
Chicago Şimşek, Volkan. “ESTIMATION OF RADIOLOGICAL DOSES OVER TURKEY BY USING ATMOSPHERIC DISPERSION MODEL AFTER FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT”. Turkish Journal of Nuclear Sciences 30, sy. 1 (Haziran 2018): 53-62.
EndNote Şimşek V (01 Haziran 2018) ESTIMATION OF RADIOLOGICAL DOSES OVER TURKEY BY USING ATMOSPHERIC DISPERSION MODEL AFTER FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT. Turkish Journal of Nuclear Sciences 30 1 53–62.
IEEE V. Şimşek, “ESTIMATION OF RADIOLOGICAL DOSES OVER TURKEY BY USING ATMOSPHERIC DISPERSION MODEL AFTER FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT”, Turkish Journal of Nuclear Sciences, c. 30, sy. 1, ss. 53–62, 2018.
ISNAD Şimşek, Volkan. “ESTIMATION OF RADIOLOGICAL DOSES OVER TURKEY BY USING ATMOSPHERIC DISPERSION MODEL AFTER FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT”. Turkish Journal of Nuclear Sciences 30/1 (Haziran 2018), 53-62.
JAMA Şimşek V. ESTIMATION OF RADIOLOGICAL DOSES OVER TURKEY BY USING ATMOSPHERIC DISPERSION MODEL AFTER FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT. Turkish Journal of Nuclear Sciences. 2018;30:53–62.
MLA Şimşek, Volkan. “ESTIMATION OF RADIOLOGICAL DOSES OVER TURKEY BY USING ATMOSPHERIC DISPERSION MODEL AFTER FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT”. Turkish Journal of Nuclear Sciences, c. 30, sy. 1, 2018, ss. 53-62.
Vancouver Şimşek V. ESTIMATION OF RADIOLOGICAL DOSES OVER TURKEY BY USING ATMOSPHERIC DISPERSION MODEL AFTER FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT. Turkish Journal of Nuclear Sciences. 2018;30(1):53-62.