Antimicrobial Photodynamic Therapy Using Indocyanine Green Loaded FDG Conjugated Cubic Iron Oxide (C-Fe3O4) Nanoparticles
Yıl 2024,
Cilt: 37 Sayı: 2, 31 - 40, 09.01.2025
Önder Bakır
Öz
Our aim is to provide nanostructures combining photodynamic therapy (PDT) and low-dose
radiation therapy (RT) to target Escherichia coli ( E. coli) and Green Fluorescence Protein-E coli
bacteria (GFP-E. coli). To accomplish this, we synthesized cubic iron oxide nanoparticles
conjugated with 2-deoxy-2-[fluorine-19] fluoro-D-glucose (FDG) and loaded them with
indocyanine green (ICG) (referred to as ICG@FDG-MNPs). ICG, which has the potential for
PDT, was incorporated into ICG@FDG-MNPs to enable effective combined therapy approach
targeting E. coli bacteria using an LED beam and LINAC-X-ray source treatment. PDT/RT
studies demonstrated that when the nanoconjugate was initially stimulated with the LED beam
on E. coli and Green Fluorescence Protein-E. coli bacteria, radiation damage increased,
ultimately leading to bacterial death.
Etik Beyan
The authors declare that there is no ethical violation.
Destekleyen Kurum
Ege University Nuclear Sciences Institute
Teşekkür
Authors thank Prof Dr Serap Evran from Ege University, Department of Biochemistry in Izmir-Turkey for the green fluorescent bacteria she gifted and Dr. Funda Manalp and Alpman Manalp for LINAC irradiation in Medicana Hospital, Izmir/Turkey.
Kaynakça
- [1] S. K. Singh et al., “Review of Photoresponsive Plasmonic Nanoparticles That Produce Reactive Chemical Species for Photodynamic Therapy of Cancer and Bacterial Infections,” ACS Appl Nano Mater, vol. 6, no. 3, pp. 1508–1521, Feb. 2023, doi: 10.1021/acsanm.2c04551.
- [2] G. Li, Z. Lai, and A. Shan, “Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections,” Advanced Science, vol. 10, no. 11, p. 2206602, Apr. 2023, doi: https://doi.org/10.1002/advs.202206602.
- [3] M. Abkar, S. Alamian, and N. Sattarahmady, “Gelatin Micro/Nanoparticles-Based Delivery of Urease and Omp31 in Mice Has a Protective Role Against Brucella melitensis 16 M Infection,” Bionanoscience, vol. 13, pp. 1–9, Feb. 2023, doi: 10.1007/s12668-023-01073-6.
- [4] U. Chilakamarthi and L. Giribabu, “Photodynamic Therapy: Past, Present and Future,” The Chemical Record, vol. 17, no. 8, pp. 775–802, Aug. 2017, doi: https://doi.org/10.1002/tcr.201600121.
- [5] Q. Zhang and L. Li, “Photodynamic combinational therapy in cancer treatment,” J BUON, vol. 23, no. 3, pp. 561–567, 2018, [Online]. Available: http://europepmc.org/abstract/MED/30003719
- [6] S. Perni, P. Prokopovich, J. Pratten, I. P. Parkin, and M. Wilson, “Nanoparticles: their potential use in antibacterial photodynamic therapy,” Photochemical & Photobiological Sciences, vol. 10, no. 5, pp. 712–720, 2011, doi: 10.1039/C0PP00360C.
- [7] S. Kwiatkowski et al., “Photodynamic therapy – mechanisms, photosensitizers and combinations,” Biomedicine & Pharmacotherapy, vol. 106, pp. 1098–1107, 2018, doi: https://doi.org/10.1016/j.biopha.2018.07.049.
- [8] X. Wang et al., “Analysis of the In Vivo and In Vitro Effects of Photodynamic Therapy on Breast Cancer by Using a Sensitizer, Sinoporphyrin Sodium,” Theranostics, vol. 5, no. 7, pp. 772–786, 2015, doi: 10.7150/thno.10853.
- [9] X. Dai, X. Li, Y. Liu, and F. Yan, “Recent advances in nanoparticles-based photothermal therapy synergizing with immune checkpoint blockade therapy,” Mater Des, vol. 217, p. 110656, 2022, doi: https://doi.org/10.1016/j.matdes.2022.110656.
- [10] D. Wang et al., “Targeted Iron-Oxide Nanoparticle for Photodynamic Therapy and Imaging of Head and Neck Cancer,” ACS Nano, vol. 8, no. 7, pp. 6620–6632, Jul. 2014, doi: 10.1021/nn501652j.
- [11] M. Saeed, W. Ren, and A. Wu, “Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances,” Biomater Sci, vol. 6, no. 4, pp. 708–725, 2018, doi: 10.1039/C7BM00999B.
- [12] C. Martinez-Boubeta et al., “Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications,” Sci Rep, vol. 3, no. 1, p. 1652, 2013, doi: 10.1038/srep01652.
- [13] B. Anegbe, I. H. Ifijen, M. Maliki, I. E. Uwidia, and A. I. Aigbodion, “Graphene oxide synthesis and applications in emerging contaminant removal: a comprehensive review,” Environ Sci Eur, vol. 36, no. 1, p. 15, 2024, doi: 10.1186/s12302-023-00814-4.
- [14] K. Bin Liew et al., “A review and revisit of nanoparticles for antimicrobial drug delivery,” J Med Life, vol. 15, pp. 328–335, Apr. 2022, doi: 10.25122/jml-2021-0097.
- [15] J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, and J. Hubalek, “Magnetic nanoparticles and targeted drug delivering,” Pharmacol Res, vol. 62, no. 2, pp. 144–149, 2010, doi: https://doi.org/10.1016/j.phrs.2010.01.014.
- [16] E. Kianfar, “Magnetic Nanoparticles in Targeted Drug Delivery: a Review,” J Supercond Nov Magn, Jun. 2021, doi: 10.1007/s10948-021-05932-9.
- [17] Q A Pankhurst, J Connolly, S K Jones, and J Dobson, “Applications of magnetic nanoparticles in biomedicine,” J Phys D Appl Phys, vol. 36, no. 13, p. R167, 2003, doi: 10.1088/0022-3727/36/13/201.
- [18] Z. Yu et al., “Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field,” Nanoscale Res Lett, vol. 15, no. 1, p. 115, 2020, doi: 10.1186/s11671-020-03344-7.
- [19] P. Farinha, J. Coelho, C. Reis, and M. Gaspar, “A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics,” Nanomaterials, vol. 11, p. 3432, Dec. 2021, doi: 10.3390/nano11123432.
- [20] V. I. Shubayev, T. R. Pisanic, and S. Jin, “Magnetic nanoparticles for theragnostics,” Adv Drug Deliv Rev, vol. 61, no. 6, pp. 467–477, 2009, doi: https://doi.org/10.1016/j.addr.2009.03.007.
- [21] E. Illés, E. Tombácz, M. Szekeres, I. Y. Tóth, Á. Szabó, and B. Iván, “Novel carboxylated PEG-coating on magnetite nanoparticles designed for biomedical applications,” J Magn Magn Mater, vol. 380, pp. 132–139, 2015, doi: https://doi.org/10.1016/j.jmmm.2014.10.146.
- [22] O. J. Fakayode, N. Tsolekile, S. P. Songca, and O. S. Oluwafemi, “Applications of functionalized nanomaterials in photodynamic therapy,” Biophys Rev, vol. 10, no. 1, pp. 49–67, 2018, doi: 10.1007/s12551-017-0383-2.
- [23] B. A. Thomas-Moore, C. A. del Valle, R. A. Field, and M. J. Marín, “Recent advances in nanoparticle-based targeting tactics for antibacterial photodynamic therapy,” Photochemical & Photobiological Sciences, vol. 21, no. 6, pp. 1111–1131, 2022, doi: 10.1007/s43630-022-00194-3.
- [24] V. Yasakci, V. Tekin, O. Kozgus, V. Evren, and P. Unak, “Hyaluronic acid-modified [19F]FDG-conjugated magnetite nanoparticles: in vitro bioaffinities and HPLC analyses in organs,” J Radioanal Nucl Chem, vol. 318, Oct. 2018, doi: 10.1007/s10967-018-6282-6.
- [25] M. Hu, G. Chen, L. Luo, and L. Shang, “A Systematic Review and Meta-Analysis on the Accuracy of Fluorodeoxyglucose Positron Emission Tomography/ Computerized Tomography for Diagnosing Periprosthetic Joint Infections,” Front Surg, vol. 9, 2022, [Online]. Available: https://www.frontiersin.org/journals/surgery/articles/10.3389/fsurg.2022.698781
- [26] Y. Yao et al., “Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance,” Front Mol Biosci, vol. 7, 2020, [Online]. Available: https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2020.00193
- [27] Y. Matsumoto et al., “Evaluation of Multidrug Efflux Pump Inhibitors by a New Method Using Microfluidic Channels,” PLoS One, vol. 6, p. e18547, Apr. 2011, doi: 10.1371/journal.pone.0018547.
- [28] C. Landon et al., “Real-Time Fluorescence Microscopy on Living E. coli Sheds New Light on the Antibacterial Effects of the King Penguin β-Defensin AvBD103b,” Int J Mol Sci, vol. 23, no. 4, 2022, doi: 10.3390/ijms23042057.
- [29] S. K. Gogoi, P. Gopinath, A. Paul, A. Ramesh, S. S. Ghosh, and A. Chattopadhyay, “Green Fluorescent Protein-Expressing Escherichia coli as a Model System for Investigating the Antimicrobial Activities of Silver Nanoparticles,” Langmuir, vol. 22, no. 22, pp. 9322–9328, Oct. 2006, doi: 10.1021/la060661v.
- [30] E. Tutun, V. Tekin, V. Yasakcı, Ö. Aras, and P. Ünak, “Synthesis and morphological studies of Tc-99m-labeled lupulone-conjugated Fe3O4@TiO2 nanocomposite, and in vitro cytotoxicity activity on prostate cancer cell lines,” Appl Organomet Chem, vol. 35, no. 12, p. e6435, Dec. 2021, doi: https://doi.org/10.1002/aoc.6435.
- [31] Y. Zhang, N. Kohler, and M. Zhang, “Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake,” Biomaterials, vol. 23, no. 7, pp. 1553–1561, 2002, doi: https://doi.org/10.1016/S0142-9612(01)00267-8.
- [32] M. Subramanian et al., “A Pilot Study Into the Use of FDG-mNP as an Alternative Approach in Neuroblastoma Cell Hyperthermia,” IEEE Trans Nanobioscience, vol. 15, p. 1, Jul. 2016, doi: 10.1109/TNB.2016.2584543.
- [33] K. L. Carraway and R. B. Triplett, “Reaction of carbodiimides with protein sulfhydryl groups,” Biochimica et Biophysica Acta (BBA) - Protein Structure, vol. 200, no. 3, pp. 564–566, 1970, doi: https://doi.org/10.1016/0005-2795(70)90112-1.
- [34] C. Ozada, V. Tekin, F. B. Barlas, S. Timur, and P. Unak, “Protoporphyrin-IX and Manganese Oxide Nanoparticles Encapsulated in Niosomes as Theranostic,” ChemistrySelect, vol. 5, no. 6, pp. 1987–1993, Feb. 2020, doi: https://doi.org/10.1002/slct.201901620.
- [35] V. Tekin et al., “A novel anti-angiogenic radio/photo sensitizer for prostate cancer imaging and therapy: 89Zr-Pt@TiO2-SPHINX, synthesis and in vitro evaluation,” Nucl Med Biol, vol. 94–95, pp. 20–31, 2021, doi: https://doi.org/10.1016/j.nucmedbio.2020.12.005.
- [36] B. Demir, F. B. Barlas, Z. P. Gumus, P. Unak, and S. Timur, “Theranostic Niosomes as a Promising Tool for Combined Therapy and Diagnosis: ‘All-in-One’ Approach,” ACS Appl Nano Mater, vol. 1, no. 6, pp. 2827–2835, Jun. 2018, doi: 10.1021/acsanm.8b00468.
- [37] P. Kumar, A. V Ranawade, and N. G. Kumar, “Potential Probiotic Escherichia coli 16 Harboring the Vitreoscilla Hemoglobin Gene Improves Gastrointestinal Tract Colonization and Ameliorates Carbon Tetrachloride Induced Hepatotoxicity in Rats,” Biomed Res Int, vol. 2014, no. 1, p. 213574, Jan. 2014, doi: https://doi.org/10.1155/2014/213574.
- [38] S. Moritake et al., “Functionalized Nano-Magnetic Particles for an In Vivo Delivery System,” J Nanosci Nanotechnol, vol. 7, pp. 937–944, Apr. 2007, doi: 10.1166/jnn.2007.216.
[39] Y. Wang et al., “Enhanced antimicrobial activity through the combination of antimicrobial photodynamic therapy and low-frequency ultrasonic irradiation,” Adv Drug Deliv Rev, vol. 183, p. 114168, 2022, doi: https://doi.org/10.1016/j.addr.2022.114168.
- [40] M. Ribeiro, I. B. Gomes, M. J. Saavedra, and M. Simões, “Photodynamic therapy and combinatory treatments for the control of biofilm-associated infections,” Lett Appl Microbiol, vol. 75, no. 3, pp. 548–564, Sep. 2022, doi: https://doi.org/10.1111/lam.13762.
[41] R. Youf et al., “Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies,” Pharmaceutics, vol. 13, no. 12, 2021, doi: 10.3390/pharmaceutics13121995.
- [42] D. Kunz, J. Wirth, A. Sculean, and S. Eick, “In- vitro-activity of additive application of hydrogen peroxide in antimicrobial photodynamic therapy using LED in the blue spectrum against bacteria and biofilm associated with periodontal disease,” Photodiagnosis Photodyn Ther, vol. 26, pp. 306–312, 2019, doi: https://doi.org/10.1016/j.pdpdt.2019.04.015.
[43] V. Secchi, A. Monguzzi, and I. Villa, “Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy,” Int J Mol Sci, vol. 23, p. 8736, Aug. 2022, doi: 10.3390/ijms23158736.
- [44] Y. K. Mohanta, K. Biswas, S. K. Jena, A. Hashem, E. F. Abd_Allah, and T. K. Mohanta, “Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants,” Front Microbiol, vol. 11, 2020, [Online]. Available: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2020.01143
- [45] O. Aras et al., “An in-vivo pilot study into the effects of FDG-mNP in cancer in mice,” PLoS One, vol. 13, p. e0202482, Aug. 2018, doi: 10.1371/journal.pone.0202482.
- [46] F. Barlas et al., “Multimodal Theranostic Assemblings: Double Encapsulation of Protoporphyrine-IX/Gd3+ in Niosomes,” RSC Adv, vol. 6, Mar. 2016, doi: 10.1039/C5RA26737D.
- [47] K. Bilici et al., “Broad spectrum antibacterial photodynamic and photothermal therapy achieved with indocyanine green loaded SPIONs under near infrared irradiation,” Biomater Sci, vol. 8, no. 16, pp. 4616–4625, 2020, doi: 10.1039/D0BM00821D.
- [48] P. Magesan et al., “Photodynamic and antibacterial studies of template-assisted Fe<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> nanocomposites,” Photodiagnosis Photodyn Ther, vol. 40, p. 103064, 2022, doi: 10.1016/j.pdpdt.2022.103064.
- [49] X. Cui et al., “Charge adaptive phytochemical-based nanoparticles for eradication of methicillin-resistant staphylococcus aureus biofilms,” Asian J Pharm Sci, vol. 19, no. 3, p. 100923, 2024, doi: https://doi.org/10.1016/j.ajps.2024.100923.
- [50] S. F. Alanazi, “Evaluating the effect of X ray irradiation in the control of food bacterial pathogens,” J King Saud Univ Sci, vol. 35, no. 1, p. 102367, 2023, doi: https://doi.org/10.1016/j.jksus.2022.102367.
- [51] J. Cherif, A. Raddaoui, M. Trabelsi, and N. Souissi, “Diagnostic low-dose X-ray radiation induces fluoroquinolone resistance in pathogenic bacteria,” Int J Radiat Biol, vol. 99, no. 12, pp. 1971–1977, Dec. 2023, doi: 10.1080/09553002.2023.2232016.
- [52] V. Yemmireddy, A. Adhikari, and J. Moreira, “Effect of ultraviolet light treatment on microbiological safety and quality of fresh produce: An overview,” Front Nutr, vol. 9, 2022, [Online]. Available: https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.871243
- [53] O. Langer et al., “Synthesis of fluorine-18-labeled ciprofloxacin for PET studies in humans,” Nucl Med Biol, vol. 30, no. 3, pp. 285–291, 2003, doi: https://doi.org/10.1016/S0969-8051(02)00444-4.
- [54] M. Silindir-Gunay and A. Y. Ozer, “99mTc-radiolabeled Levofloxacin and micelles as infection and inflammation imaging agents,” J Drug Deliv Sci Technol, vol. 56, p. 101571, 2020, doi: https://doi.org/10.1016/j.jddst.2020.101571.
- [55] A. Signore et al., “Imaging Bacteria with Radiolabelled Probes: Is It Feasible?,” J Clin Med, vol. 9, no. 8, 2020, doi: 10.3390/jcm9082372.
- [56] J. Li et al., “Effects of low-dose X-ray irradiation on activated macrophages and their possible signal pathways,” PLoS One, vol. 12, p. e0185854, Oct. 2017, doi: 10.1371/journal.pone.0185854.
- [57] A. Liebmann et al., “Low-Dose X-Irradiation ofAdjuvant-Induced Arthritis in Rats,” Strahlentherapie und Onkologie, vol. 180, no. 3, pp. 165–172, 2004, doi: 10.1007/s00066-004-1197-2.
- [58] T. D. Luckey, “Physiological Benefits from Low Levels of Ionizing Radiation,” Health Phys, vol. 43, no. 6, 1982, [Online]. Available: https://journals.lww.com/health-physics/fulltext/1982/12000/physiological_benefits_from_low_levels_of_ionizing.1.aspx
- [59] A. K. Lam et al., “PEGylation of Polyethylenimine Lowers Acute Toxicity while Retaining Anti-Biofilm and β-Lactam Potentiation Properties against Antibiotic-Resistant Pathogens,” ACS Omega, vol. 5, no. 40, pp. 26262–26270, Oct. 2020, doi: 10.1021/acsomega.0c04111.
- [60] M. Bravo et al., “Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability,” Journal of Controlled Release, vol. 372, pp. 751–777, 2024, doi: https://doi.org/10.1016/j.jconrel.2024.06.055.
- [61] J. M. Gillies, C. Prenant, G. N. Chimon, G. J. Smethurst, B. A. Dekker, and J. Zweit, “Microfluidic technology for PET radiochemistry,” Applied Radiation and Isotopes, vol. 64, no. 3, pp. 333–336, 2006, doi: https://doi.org/10.1016/j.apradiso.2005.08.009.
- [62] G. Unak et al., “Gold nanoparticle probes: Design and in vitro applications in cancer cell culture,” Colloids Surf B Biointerfaces, vol. 90, pp. 217–226, 2012, doi: https://doi.org/10.1016/j.colsurfb.2011.10.027.
- [63] L. M. V. Knappe Frederik Anton; Giovanella Luca; Luster Markus; Librizzi Damiano, “Diagnostic value of FDG-PET/CT in the diagnostic work-up of inflammation of unknown origin,” Nuklearmedizin - NuclearMedicine, vol. 62, no. 01, pp. 27–33, 2023, doi: 10.1055/a-1976-1765.