Research Article
BibTex RIS Cite

A New Approach to the Solution of Facility Layout Problems with Filled Function Method

Year 2024, Volume: 19 Issue: 2, 475 - 483, 30.09.2024
https://doi.org/10.55525/tjst.1366299

Abstract

Facility layout problems are generally solved by stochastic methods in the literature. The large number of iterations used in these methods is quite costly in terms of solution time. In this study, in order to get rid of this disadvantage, the facility layout problem was solved using the filled function method, which is known to be very successful in solving global optimization problems. In order to demonstrate the effectiveness of the filled function method, the classical linear facility layout problem was handled in a non-linear manner and the problem was deliberately made more difficult. In order to use the filled function method, the facility layout problem was transformed into an unconstrained and multimodal (including more than one local minima) global optimization problem by using the hyperbolic smoothing technique and the penalty function method. Thus, in this first study in the literature where a deterministic method is combined with the solution of the facility layout problem, it is shown that the non-convex facility layout problem can be solved with the filled function method with very few iterations and short solution times.

References

  • Yigit V, Türkbey O. Tesis Yerleşim Problemlerine Sezgisel Metotlarla Yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 2003; 18:45-56.
  • Banjac B, Nenezic M, Petrovic M, Malesevic B, Obradovic R. moNGeometrija, 4th international scientific conference. Trifocal curves in matlab and java 2014; 346.
  • Rosenblatt, MJ. The Facilities Layout Problem: A Multi-goal Approach. International Journal of Production Research 1986; 17:323-332.
  • Tavakkoli- Moghaddin R, Shayan E. Unequal Area Facility Layout Using Genetic Search. IIE Transactions 1994.
  • Sule DR. Manufacturing Facilities Location, Planning and Design. International Thomson Publishing 1994.
  • Ulutas BH. Dinamik yerleşim probleminin çözümü için bir klonal seçim algoritması ve uygulamaları. Eskisehir Osmangazi University. Ph D Thesis 2008.
  • Koopmans TC, Beckmann M. Assignment problems and the location of economic activities. Econometrica 1957; 25(1), 53–76.
  • Sha DY, Chen C-W. A New Approach to The Multiple Objective Facility layout Problem. Integrated Manufacturing Systems 2001; 12(1):59-66.
  • Kim M, Chae J. A monarch butterfly optimization for an unequal area facility layout problem. Soft Computing 2021; 25:14933–14953.
  • Meller RD, Gau KY. The Facility Layout Problem: Recent and Emerging Trends and Perspectives. Journal of Manufacturing Systems 1996; 15(5):351-366.
  • Mirchandani PB, Francis RL. Discrete Location Theory. John Wiley & Sons, New York, 1990.
  • Hillier FS. Quantitative tools for plant layout analysis. Journal of lndustrial Engineering 1963; 14/1, 33-40.
  • Bazaraa MS. Computerized layout design: A branch and bound approach. AIIE Transactions 1975; 7/4, 432-438.
  • Hassan MMD, Hogg GL, Smith DR. SHAPE: A construction algorithm for area placement evaluation. International Journal 1986; 24/5, 1283-1295.
  • Miele W. Link-length minimization in networks. Operations Research 1958; 6, 232-243.
  • Wersan SJ, Quon JE, Charnes A. Systems analysis of refuse collection and disposable practices. 14: Yearbook, American Public Works Association 1962; 195-211.
  • Wesolowsky GO, Love RF. The optimal location of new facilities using rectangular distances. Operations Research 1971; 19, 124-130.
  • Morris JG. Convergence of the Weiszfeld algorithm for Weber problems using a generalized ‘distance’ function. Operations Research 1981; 29, 37-48.
  • Morris JG, Verdini WA. A simple iterative scheme for solving minimum facility location problems involving lp distances. Operations Research 1979; 27, 1180-1188.
  • Camp D, Carter M, Vannelli A. A nonlinear optimization approach for solving facility layout problems. European Journal of Operational Research 1992; 57, 174-189.
  • Bertsekas D. Nondifferentiable optimization via approximation, Math Program Stud 1975; 3, 1–25.
  • Zang I. A smoothing out technique for min-max optimization. Math Program 1980; 19, 61–77.
  • Love RF, Morris JG, Wesolowsky GO. Facilities Location: Models and Methods. North-Holland, New York 1988.
  • Bazaraa MS, Shetty CM. Nonlinear Programming: Theory and Algorithms. Wiley, New York 1979; 340-343.
  • Ge RP. A filled function method for finding a global minimizer of a function of several variables. Math Program 1990; 46:191–204.
  • Ge RP, Qin YF. A class of filled functions for finding global minimizers of a function of several variables. J Optim Theory Appl 1987; 54:241–252.
  • Branin F. Widely convergent methods for finding multiple solutions of simultaneous nonlinear equations. IBM J Res Dev 1972; 16:504–522.
  • Basso P. Iterative methods for the localization of the global maximum. SIAM J Numer Anal 1982; 19:781–792.
  • Levy AV, Montalvo A. The tunneling algorithm for the global minimization of functions. Siam J Sci Stat Comput 1985; 6:15–29.
  • Lin H, Gao Y, Wan Y. A continuously differentiable filled function method for global optimization. Numerical Algorithms 2014; 66:511–523.
  • Sahiner A, Yilmaz N, Ibrahem SA. Smoothing Approximations to Non-smooth Functions. Journal of Multidisciplinary Modeling and Optimization 2019; 1(2):69-74.
  • Sahiner A, Yilmaz N, Kapusuz G. A novel modeling and smoothing technique in global optimization. Journal of Industrial and Management Optimization 2019; 15(1):113–130.

Tesis Yerleşim Probleminin Çözümüne Doldurulmuş Fonksiyon Yöntemi ile Yeni Bir Yaklaşım

Year 2024, Volume: 19 Issue: 2, 475 - 483, 30.09.2024
https://doi.org/10.55525/tjst.1366299

Abstract

Literatürdeki tesis yerleşim problemleri genellikle stokastik yöntemlerle çözülmektedir. Bu yöntemlerde kullanılan iterasyon sayısının fazlalığı çözüm süresi açısından oldukça maliyetlidir. Bu çalışmada, bu dezavantajdan kurtulmak adına tesis yerleşim problemi, global optimizasyon problemlerini çözmede oldukça başarılı olduğu bilinen doldurulmuş fonksiyon yöntemi kullanılarak çözülmüştür. Doldurulmuş fonksiyon yönteminin etkinliğini göstermek için klasik doğrusal tesis yerleşim problemi, doğrusal olmayacak şekilde ele alınmış ve problem bilinçli olarak zorlaştırılmıştır. Doldurulmuş fonksiyon yöntemini kullanabilmek adına hiperbolik yumuşatma tekniği ve ceza fonksiyonu yöntemi kullanılarak tesis yerleşim problemi kısıtsız ve multimodal (birden fazla yerel minimumun içerilmesi) bir global optimizasyon problemi haline dönüştürülmüştür. Böylece, tesis yerleşim probleminin çözümü ile deterministik bir yöntemin bir araya getirildiği literatürdeki bu ilk çalışmada, konveks olmayan tesis yerleşim problemi doldurulmuş fonksiyon yöntemi ile oldukça küçük iterasyonlar ve kısa çözüm süreleri ile çözülebileceği gösterilmiştir.

References

  • Yigit V, Türkbey O. Tesis Yerleşim Problemlerine Sezgisel Metotlarla Yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 2003; 18:45-56.
  • Banjac B, Nenezic M, Petrovic M, Malesevic B, Obradovic R. moNGeometrija, 4th international scientific conference. Trifocal curves in matlab and java 2014; 346.
  • Rosenblatt, MJ. The Facilities Layout Problem: A Multi-goal Approach. International Journal of Production Research 1986; 17:323-332.
  • Tavakkoli- Moghaddin R, Shayan E. Unequal Area Facility Layout Using Genetic Search. IIE Transactions 1994.
  • Sule DR. Manufacturing Facilities Location, Planning and Design. International Thomson Publishing 1994.
  • Ulutas BH. Dinamik yerleşim probleminin çözümü için bir klonal seçim algoritması ve uygulamaları. Eskisehir Osmangazi University. Ph D Thesis 2008.
  • Koopmans TC, Beckmann M. Assignment problems and the location of economic activities. Econometrica 1957; 25(1), 53–76.
  • Sha DY, Chen C-W. A New Approach to The Multiple Objective Facility layout Problem. Integrated Manufacturing Systems 2001; 12(1):59-66.
  • Kim M, Chae J. A monarch butterfly optimization for an unequal area facility layout problem. Soft Computing 2021; 25:14933–14953.
  • Meller RD, Gau KY. The Facility Layout Problem: Recent and Emerging Trends and Perspectives. Journal of Manufacturing Systems 1996; 15(5):351-366.
  • Mirchandani PB, Francis RL. Discrete Location Theory. John Wiley & Sons, New York, 1990.
  • Hillier FS. Quantitative tools for plant layout analysis. Journal of lndustrial Engineering 1963; 14/1, 33-40.
  • Bazaraa MS. Computerized layout design: A branch and bound approach. AIIE Transactions 1975; 7/4, 432-438.
  • Hassan MMD, Hogg GL, Smith DR. SHAPE: A construction algorithm for area placement evaluation. International Journal 1986; 24/5, 1283-1295.
  • Miele W. Link-length minimization in networks. Operations Research 1958; 6, 232-243.
  • Wersan SJ, Quon JE, Charnes A. Systems analysis of refuse collection and disposable practices. 14: Yearbook, American Public Works Association 1962; 195-211.
  • Wesolowsky GO, Love RF. The optimal location of new facilities using rectangular distances. Operations Research 1971; 19, 124-130.
  • Morris JG. Convergence of the Weiszfeld algorithm for Weber problems using a generalized ‘distance’ function. Operations Research 1981; 29, 37-48.
  • Morris JG, Verdini WA. A simple iterative scheme for solving minimum facility location problems involving lp distances. Operations Research 1979; 27, 1180-1188.
  • Camp D, Carter M, Vannelli A. A nonlinear optimization approach for solving facility layout problems. European Journal of Operational Research 1992; 57, 174-189.
  • Bertsekas D. Nondifferentiable optimization via approximation, Math Program Stud 1975; 3, 1–25.
  • Zang I. A smoothing out technique for min-max optimization. Math Program 1980; 19, 61–77.
  • Love RF, Morris JG, Wesolowsky GO. Facilities Location: Models and Methods. North-Holland, New York 1988.
  • Bazaraa MS, Shetty CM. Nonlinear Programming: Theory and Algorithms. Wiley, New York 1979; 340-343.
  • Ge RP. A filled function method for finding a global minimizer of a function of several variables. Math Program 1990; 46:191–204.
  • Ge RP, Qin YF. A class of filled functions for finding global minimizers of a function of several variables. J Optim Theory Appl 1987; 54:241–252.
  • Branin F. Widely convergent methods for finding multiple solutions of simultaneous nonlinear equations. IBM J Res Dev 1972; 16:504–522.
  • Basso P. Iterative methods for the localization of the global maximum. SIAM J Numer Anal 1982; 19:781–792.
  • Levy AV, Montalvo A. The tunneling algorithm for the global minimization of functions. Siam J Sci Stat Comput 1985; 6:15–29.
  • Lin H, Gao Y, Wan Y. A continuously differentiable filled function method for global optimization. Numerical Algorithms 2014; 66:511–523.
  • Sahiner A, Yilmaz N, Ibrahem SA. Smoothing Approximations to Non-smooth Functions. Journal of Multidisciplinary Modeling and Optimization 2019; 1(2):69-74.
  • Sahiner A, Yilmaz N, Kapusuz G. A novel modeling and smoothing technique in global optimization. Journal of Industrial and Management Optimization 2019; 15(1):113–130.
There are 32 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section TJST
Authors

Ahmet Sahiner 0000-0002-4945-2476

Ayşe Başağaoğlu Fındık 0000-0002-1898-7718

Emine Rumeysa Kocaer 0000-0002-1822-7540

Gültekin Özdemir 0000-0001-8856-5556

Publication Date September 30, 2024
Submission Date October 9, 2023
Published in Issue Year 2024 Volume: 19 Issue: 2

Cite

APA Sahiner, A., Başağaoğlu Fındık, A., Kocaer, E. R., Özdemir, G. (2024). A New Approach to the Solution of Facility Layout Problems with Filled Function Method. Turkish Journal of Science and Technology, 19(2), 475-483. https://doi.org/10.55525/tjst.1366299
AMA Sahiner A, Başağaoğlu Fındık A, Kocaer ER, Özdemir G. A New Approach to the Solution of Facility Layout Problems with Filled Function Method. TJST. September 2024;19(2):475-483. doi:10.55525/tjst.1366299
Chicago Sahiner, Ahmet, Ayşe Başağaoğlu Fındık, Emine Rumeysa Kocaer, and Gültekin Özdemir. “A New Approach to the Solution of Facility Layout Problems With Filled Function Method”. Turkish Journal of Science and Technology 19, no. 2 (September 2024): 475-83. https://doi.org/10.55525/tjst.1366299.
EndNote Sahiner A, Başağaoğlu Fındık A, Kocaer ER, Özdemir G (September 1, 2024) A New Approach to the Solution of Facility Layout Problems with Filled Function Method. Turkish Journal of Science and Technology 19 2 475–483.
IEEE A. Sahiner, A. Başağaoğlu Fındık, E. R. Kocaer, and G. Özdemir, “A New Approach to the Solution of Facility Layout Problems with Filled Function Method”, TJST, vol. 19, no. 2, pp. 475–483, 2024, doi: 10.55525/tjst.1366299.
ISNAD Sahiner, Ahmet et al. “A New Approach to the Solution of Facility Layout Problems With Filled Function Method”. Turkish Journal of Science and Technology 19/2 (September 2024), 475-483. https://doi.org/10.55525/tjst.1366299.
JAMA Sahiner A, Başağaoğlu Fındık A, Kocaer ER, Özdemir G. A New Approach to the Solution of Facility Layout Problems with Filled Function Method. TJST. 2024;19:475–483.
MLA Sahiner, Ahmet et al. “A New Approach to the Solution of Facility Layout Problems With Filled Function Method”. Turkish Journal of Science and Technology, vol. 19, no. 2, 2024, pp. 475-83, doi:10.55525/tjst.1366299.
Vancouver Sahiner A, Başağaoğlu Fındık A, Kocaer ER, Özdemir G. A New Approach to the Solution of Facility Layout Problems with Filled Function Method. TJST. 2024;19(2):475-83.