Araştırma Makalesi
BibTex RIS Kaynak Göster

Tuz Stresine (NaCl) Karşı Portulaca oleracea L. Türünün Kültür ve Yabani Formlarında Morfofizyolojik Yanıtların Karşılaştırılması

Yıl 2025, Cilt: 28 Sayı: 1, 44 - 52, 31.07.2025

Öz

Toprak tuzluluğu, küresel ölçekte tarımsal üretimi kısıtlayan başlıca çevresel stres etmenlerinden biridir. Bu çalışma, farklı NaCl konsantrasyonlarının (0, 50, 100, 200 ve 300 mM) kültür ve yabani semizotu (Portulaca oleracea L.) formlarında çimlenme ve fide gelişimi üzerindeki etkilerini değerlendirmeyi amaçlamaktadır. Bulgular, artan tuz seviyelerinin her iki formda da çimlenme oranı, kök ve sürgün gelişimi gibi büyüme parametrelerini anlamlı biçimde azalttığını ortaya koymuştur. Özellikle 200 ve 300 mM NaCl uygulamaları bu parametreleri ciddi şekilde baskılamıştır. Bununla birlikte, 50 ve 100 mM konsantrasyonlarında bazı morfolojik parametrelerde sınırlı da olsa artış gözlemlenmiş; bu durum, semizotunun hafif ve orta düzeydeki tuz stresine belirli bir tolerans geliştirebildiğine işaret etmektedir. Klorofil düzeyleri, başlangıçta artış göstermesine rağmen yüksek tuz seviyelerinde (200 ve 300 mM) keskin şekilde azalmış ve klorofil sentezi neredeyse tamamen durmuştur. Karşılaştırmalı analizler, kültür semizotu bireylerinin yabani türe kıyasla daha yüksek tuz toleransı sergilediğini göstermiştir. Bu sonuçlar, kültür semizotunun tuzlu topraklarda yetiştirilebilecek alternatif bir sebze türü olabileceğini ve sürdürülebilir tarım ile tuzlu toprakların rehabilitasyonu gibi uygulamalarda potansiyel taşıdığını göstermektedir.

Etik Beyan

Etik izne gerek yoktur.

Destekleyen Kurum

Bu çalışma SUBÜ BAP- 254-2024 numaralı “Semizotu (Portulaca oleracea L.)' nun Farklı Tuz Konsantrasyonlarında Çimlenme ve Fide Gelişimi Üzerindeki Etkisi” isimli Lisans öğrencisi katılımlı araştırma projeleri kapsamında desteklenmiştir.

Proje Numarası

Subü-BAP-254-2024

Teşekkür

Bu çalışma sırasında katkı sağlayan Subü-herboloji laboratuvar ekibine ve Bitki Koruma Bölüm Başkanlığına ve desteklerinden ötürü Subü-BAP'a teşekkür ederiz.

Kaynakça

  • Akbarimoghaddam, H., Galavi, M., Ghanbari, A., & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, 9(1), 43–50.
  • Alam, M. A., Hossain, M. A., & Bhuiyan, M. H. R. (2014). Screening of purslane (Portulaca oleracea L.) accessions for high salt tolerance. The Scientific World Journal, 2014, Article ID 310952. https://doi.org/10.1155/2014/310952 Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
  • Borsai, O., Hassan, M. A., Negrușier, C., Raigón, M. D., Boscaiu, M., Sestraș, R. E., & Vicente, O. (2020). Responses to salt stress in Portulaca: Insight into its tolerance mechanisms. Plants, 9(12), 1660. https://doi.org/10.3390/plants9121660.
  • Chauhan, B. S., & Johnson, D. E. (2009). Seed germination ecology of Portulaca oleracea L.: An important weed of rice and upland crops. Annals of Applied Biology, 155(1), 61–69.
  • Chhabra, R. (2017). Soil salinity and water quality. Routledge.
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(2), 11–34.
  • Doğru, A., & Canavar, S. (2020). Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri. Academic Platform Journal of Engineering and Science, 8(1), 155–174.
  • Er, H., & Elibol, S. (2022). Farklı tuz konsantrasyonlarında semiz otu (Portulaca oleracea) ve kamışsı yumak (Festuca arundinacea) bitkileri uygulanarak tuzlu toprakların fitoremediasyon yöntemiyle iyileştirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (34), 70–74. https://doi.org/10.31590/ejosat.1069094.
  • FAO. (2021). Global assessment of soil salinization and impacts on agriculture. Food and Agriculture Organization of the United Nations.
  • Fontana, E., Hoeberechts, J., Nicola, S., Cros, V., Palmegiano, G. B., & Peiretti, P. G. (2006). Nitrogen concentration and nitrate/ammonium ratio affect yield and change the oxalic acid concentration and fatty acid profile of purslane (Portulaca oleracea L.) grown in a soilless culture system. Journal of the Science of Food and Agriculture, 86(14), 2417–2424.
  • He, J., You, X., & Qin, L. (2021). High salinity reduces plant growth and photosynthetic performance but enhances certain nutritional quality of C4 halophyte Portulaca oleracea L. grown hydroponically under LED lighting. Frontiers in Plant Science, 12, 651341. https://doi.org/10.3389/fpls.2021.651341.
  • Hnilickova, H., Kraus, K., Vachova, P., & Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants, 10(5), 845. https://doi.org/10.3390/plants10050845.
  • Incharoensakdi, A., Takabe, T., & Akazawa, T. (1986). Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Plant Physiology, 81(4), 1044–1049. https://doi.org/10.1104/pp.81.4.1044 Karimi, G. R., Khouei, A., Omidi, A., Kalantari, M. R., Babaei, J., Taghiabadi, E., & Razavi, B. M. (2010). Protective effect of aqueous and ethanolic extracts of Portulaca oleracea against cisplatin-induced nephrotoxicity. Liu, L., Howe, P., Zhou, Y. F., Xu, Z. Q., Hocart, C., & Zhang, R. (2000). Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. Journal of Chromatography A, 893(1), 207–213.
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30.
  • Majeed, A., & Muhammad, Z. (2019). Salinity: A major agricultural problem—Causes, impacts on crop productivity and management strategies. In M. Hasanuzzaman, M. Fujita, & K. Nahar (Eds.), Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches (pp. 83–99).
  • Munns, R., & James, R. A. (2003). Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant and Soil, 253(1), 201–218. https://doi.org/10.1023/A:1024553303144.
  • Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1–11. https://doi.org/10.1093/aob/mcw191.
  • Robinson, S. P., & Jones, G. P. (1986). Accumulation of glycine betaine in chloroplasts provides osmotic adjustment during salt stress. Australian Journal of Plant Physiology, 13, 659–668.
  • Sdouga, D., Ben Amor, F., Ghribi, S., Kabtni, S., Tebini, M., Branca, F., Trifi-Farah, N., & Marghali, S. (2019). An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses. Ecotoxicology and Environmental Safety, 172, 45–52. https://doi.org/10.1016/j.ecoenv.2018.12.082.
  • Shahbaz, M., & Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32(4), 237–249.
  • Simopoulos, A. P. (2004). Omega-3 fatty acids and antioxidants in edible wild plants. Biological Research, 37(2), 263–277.
  • Singh, K. P. (1973). Effect of temperature and light on seed germination of two ecotypes of Portulaca oleracea L. New Phytologist, 72, 289–295.
  • Soltabayeva, A., Ongaltay, A., Omondi, J. O., & Srivastava, S. (2021). Morphological, physiological and molecular markers for salt-stressed plants. Plants, 10(2), 243. https://doi.org/10.3390/plants10020243 Tang, N., Zhang, B. J., Chen, Q. Z., Yang, P., Wang, L. K., & Qian, B. L. (2020). Effect of salt stress on photosynthetic and antioxidant characteristics in purslane (Portulaca oleracea).
  • Teixeira, M., & Carvalho, I. D. (2009). Effects of salt stress on purslane (Portulaca oleracea) nutrition. Annals of Applied Biology, 154(1), 77–86.
  • Uddin, M. K., Juraimi, A. S., Anwar, F., Hossain, M. A., & Alam, M. A. (2012). Effect of salinity on proximate mineral composition of purslane (Portulaca oleracea L.). Australian Journal of Crop Science, 6(12), 1732–1736. Vural, H., Eşiyok, D., & Duman, İ. (2000). Kültür sebzeleri (Sebze yetiştirme). İzmir: Ege Üniversitesi Basımevi.
  • Yang, Z., Liu, C., Xiang, L., & Zheng, Y. (2009). Phenolic alkaloids as a new class of antioxidants in Portulaca oleracea. Phytotherapy Research, 23(7), 1032–1035.
  • Yazdani-Biouki, R., Karimi, M., & Soltangheisi, A. (2023). Purslane (Portulaca oleracea L.) salt tolerance assessment. Soil Science and Plant Nutrition, 69(4), 250–259. https://doi.org/10.1080/00380768.2023.2212696 Yılmaz, M., Doğru, A., & Kıldış, M. H. (2021). Farklı tuz konsantrasyonlarının bazı serin iklim çim alan buğdaygillerinin çimlenmesi ve sürgün gelişimi üzerine etkileri. Journal of Agricultural Biotechnology, 2(2), 66–77.
  • Zaman, S., Shah, S. B., Jiang, Y. T., & Che, S. Q. (2018). Saline conditions alter morpho-physiological intensification in purslane (Portulaca oleracea L.). Journal of Biological Regulators and Homeostatic Agents, 32(3), 635–639. PMID: 29921392

Comparative Assessment of Morphophysiological Responses to Salt Stress (NaCl) in Cultivated and Wild Forms of Portulaca oleracea L.

Yıl 2025, Cilt: 28 Sayı: 1, 44 - 52, 31.07.2025

Öz

Soil salinity is one of the major environmental stress factors limiting agricultural production on a global scale. This study aims to evaluate the effects of different NaCl concentrations (0, 50, 100, 200, and 300 mM) on germination and seedling development in cultivated and wild forms of Portulaca oleracea L. The findings revealed that increasing salt levels significantly reduced growth parameters such as germination rate, root, and shoot development in both forms. In particular, 200 and 300 mM NaCl treatments severely suppressed these parameters. However, at 50 and 100 mM concentrations, limited increases were observed in some morphological traits, indicating a certain level of tolerance of purslane to mild and moderate salt stress. Although chlorophyll levels initially increased, they sharply declined under high salt conditions (200 and 300 mM), with chlorophyll synthesis nearly coming to a halt. Comparative analyses showed that the cultivated purslane individuals exhibited greater salt tolerance than the wild type. These results suggest that cultivated purslane may be a viable alternative vegetable for saline soils and holds potential for applications in sustainable agriculture and the rehabilitation of salt-affected lands

Proje Numarası

Subü-BAP-254-2024

Kaynakça

  • Akbarimoghaddam, H., Galavi, M., Ghanbari, A., & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, 9(1), 43–50.
  • Alam, M. A., Hossain, M. A., & Bhuiyan, M. H. R. (2014). Screening of purslane (Portulaca oleracea L.) accessions for high salt tolerance. The Scientific World Journal, 2014, Article ID 310952. https://doi.org/10.1155/2014/310952 Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
  • Borsai, O., Hassan, M. A., Negrușier, C., Raigón, M. D., Boscaiu, M., Sestraș, R. E., & Vicente, O. (2020). Responses to salt stress in Portulaca: Insight into its tolerance mechanisms. Plants, 9(12), 1660. https://doi.org/10.3390/plants9121660.
  • Chauhan, B. S., & Johnson, D. E. (2009). Seed germination ecology of Portulaca oleracea L.: An important weed of rice and upland crops. Annals of Applied Biology, 155(1), 61–69.
  • Chhabra, R. (2017). Soil salinity and water quality. Routledge.
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(2), 11–34.
  • Doğru, A., & Canavar, S. (2020). Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri. Academic Platform Journal of Engineering and Science, 8(1), 155–174.
  • Er, H., & Elibol, S. (2022). Farklı tuz konsantrasyonlarında semiz otu (Portulaca oleracea) ve kamışsı yumak (Festuca arundinacea) bitkileri uygulanarak tuzlu toprakların fitoremediasyon yöntemiyle iyileştirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (34), 70–74. https://doi.org/10.31590/ejosat.1069094.
  • FAO. (2021). Global assessment of soil salinization and impacts on agriculture. Food and Agriculture Organization of the United Nations.
  • Fontana, E., Hoeberechts, J., Nicola, S., Cros, V., Palmegiano, G. B., & Peiretti, P. G. (2006). Nitrogen concentration and nitrate/ammonium ratio affect yield and change the oxalic acid concentration and fatty acid profile of purslane (Portulaca oleracea L.) grown in a soilless culture system. Journal of the Science of Food and Agriculture, 86(14), 2417–2424.
  • He, J., You, X., & Qin, L. (2021). High salinity reduces plant growth and photosynthetic performance but enhances certain nutritional quality of C4 halophyte Portulaca oleracea L. grown hydroponically under LED lighting. Frontiers in Plant Science, 12, 651341. https://doi.org/10.3389/fpls.2021.651341.
  • Hnilickova, H., Kraus, K., Vachova, P., & Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants, 10(5), 845. https://doi.org/10.3390/plants10050845.
  • Incharoensakdi, A., Takabe, T., & Akazawa, T. (1986). Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Plant Physiology, 81(4), 1044–1049. https://doi.org/10.1104/pp.81.4.1044 Karimi, G. R., Khouei, A., Omidi, A., Kalantari, M. R., Babaei, J., Taghiabadi, E., & Razavi, B. M. (2010). Protective effect of aqueous and ethanolic extracts of Portulaca oleracea against cisplatin-induced nephrotoxicity. Liu, L., Howe, P., Zhou, Y. F., Xu, Z. Q., Hocart, C., & Zhang, R. (2000). Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. Journal of Chromatography A, 893(1), 207–213.
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30.
  • Majeed, A., & Muhammad, Z. (2019). Salinity: A major agricultural problem—Causes, impacts on crop productivity and management strategies. In M. Hasanuzzaman, M. Fujita, & K. Nahar (Eds.), Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches (pp. 83–99).
  • Munns, R., & James, R. A. (2003). Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant and Soil, 253(1), 201–218. https://doi.org/10.1023/A:1024553303144.
  • Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1–11. https://doi.org/10.1093/aob/mcw191.
  • Robinson, S. P., & Jones, G. P. (1986). Accumulation of glycine betaine in chloroplasts provides osmotic adjustment during salt stress. Australian Journal of Plant Physiology, 13, 659–668.
  • Sdouga, D., Ben Amor, F., Ghribi, S., Kabtni, S., Tebini, M., Branca, F., Trifi-Farah, N., & Marghali, S. (2019). An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses. Ecotoxicology and Environmental Safety, 172, 45–52. https://doi.org/10.1016/j.ecoenv.2018.12.082.
  • Shahbaz, M., & Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32(4), 237–249.
  • Simopoulos, A. P. (2004). Omega-3 fatty acids and antioxidants in edible wild plants. Biological Research, 37(2), 263–277.
  • Singh, K. P. (1973). Effect of temperature and light on seed germination of two ecotypes of Portulaca oleracea L. New Phytologist, 72, 289–295.
  • Soltabayeva, A., Ongaltay, A., Omondi, J. O., & Srivastava, S. (2021). Morphological, physiological and molecular markers for salt-stressed plants. Plants, 10(2), 243. https://doi.org/10.3390/plants10020243 Tang, N., Zhang, B. J., Chen, Q. Z., Yang, P., Wang, L. K., & Qian, B. L. (2020). Effect of salt stress on photosynthetic and antioxidant characteristics in purslane (Portulaca oleracea).
  • Teixeira, M., & Carvalho, I. D. (2009). Effects of salt stress on purslane (Portulaca oleracea) nutrition. Annals of Applied Biology, 154(1), 77–86.
  • Uddin, M. K., Juraimi, A. S., Anwar, F., Hossain, M. A., & Alam, M. A. (2012). Effect of salinity on proximate mineral composition of purslane (Portulaca oleracea L.). Australian Journal of Crop Science, 6(12), 1732–1736. Vural, H., Eşiyok, D., & Duman, İ. (2000). Kültür sebzeleri (Sebze yetiştirme). İzmir: Ege Üniversitesi Basımevi.
  • Yang, Z., Liu, C., Xiang, L., & Zheng, Y. (2009). Phenolic alkaloids as a new class of antioxidants in Portulaca oleracea. Phytotherapy Research, 23(7), 1032–1035.
  • Yazdani-Biouki, R., Karimi, M., & Soltangheisi, A. (2023). Purslane (Portulaca oleracea L.) salt tolerance assessment. Soil Science and Plant Nutrition, 69(4), 250–259. https://doi.org/10.1080/00380768.2023.2212696 Yılmaz, M., Doğru, A., & Kıldış, M. H. (2021). Farklı tuz konsantrasyonlarının bazı serin iklim çim alan buğdaygillerinin çimlenmesi ve sürgün gelişimi üzerine etkileri. Journal of Agricultural Biotechnology, 2(2), 66–77.
  • Zaman, S., Shah, S. B., Jiang, Y. T., & Che, S. Q. (2018). Saline conditions alter morpho-physiological intensification in purslane (Portulaca oleracea L.). Journal of Biological Regulators and Homeostatic Agents, 32(3), 635–639. PMID: 29921392
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Herboloji
Bölüm Araştırma Makalesi
Yazarlar

Bahadır Şin 0000-0002-0109-3662

Zeliha Arık 0009-0001-9755-6448

Yeşim Yılmaz 0009-0001-8443-2366

Zehra İnce 0009-0000-2247-8142

Proje Numarası Subü-BAP-254-2024
Gönderilme Tarihi 17 Temmuz 2025
Kabul Tarihi 20 Temmuz 2025
Erken Görünüm Tarihi 30 Temmuz 2025
Yayımlanma Tarihi 31 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 1

Kaynak Göster

APA Şin, B., Arık, Z., Yılmaz, Y., İnce, Z. (2025). Tuz Stresine (NaCl) Karşı Portulaca oleracea L. Türünün Kültür ve Yabani Formlarında Morfofizyolojik Yanıtların Karşılaştırılması. Turkish Journal of Weed Science, 28(1), 44-52.

35646            35647             35648           35649            35650


35651     Dergide yayınlanan makaleler, Atıf-Ticari Olmayan 4.0 Uluslararası (CC BY-NC 4.0) lisansı altında lisanslanmıştır.