Derleme
BibTex RIS Kaynak Göster

Herbisit Formülasyonlarında Nanoteknolojinin Rolü

Yıl 2022, Cilt: 25 Sayı: 2, 134 - 144, 31.12.2022

Öz

Bitki koruma problemlerini kontrol altına almak için genellikle kimyasal mücadele yöntemine başvurulmaktadır. Yabancı otlarla kimyasal mücadelede kullanılan herbisitler, pestisit grubuna ait olup, dünya genelinde en fazla kullanılan bitki koruma ürünüdür. Herbisitlerin bu denli yüksek oranda, aşırı ve gelişigüzel kullanılması sonucu yabancı otlarda dayanıklılık oluşumu, kültür bitkilerinde toksisite, hedef dışı organizmalarda herbisit kullanımına bağlı olarak etkilenmeler, çevreye ve insan sağlığına olumsuz etkileri nedeniyle, günümüzde herbisitlere alternatif mücadele yöntemleri araştırılmaktadır. Bu alternatif yöntemlerden biri de en son teknolojik gelişmeler içerisinde yer alan nanoteknoloji bilimidir. Nanoteknoloji, genel olarak nano ölçekteki parçacıklardan yararlanılarak makro ölçekte ürünler elde etmeyi sağlayan bilim dalıdır. Nanoteknoloji, 20. yüzyılın başlarında gelişim göstermiş ve birçok bilim dalında uygulama alanı bulmuş olup, bu alanlardan biri de yabancı ot (herboloji) bilimidir. Yabancı otlar, doğrudan ve dolaylı olarak kültür bitkilerine zarar verebilmektedir. Yabancı otları kontrol altına almak için günümüzde herboloji biliminde de nanoherbisitler üretilmeye ve kullanılmaya başlanmıştır. Mücadelede tercih edilen nanoherbisitler sayesinde; düşük dozlarda aktif madde kullanımının azaltılmasına, allelokimyasalların etkin ve kolay uygulanmasına, kültür bitkilerinde toksisitenin düşmesine, yabancı otlarda dayanıklılık sorununun azalmasına ve üreticinin maliyet/işgücü yükünü hafifletmekte kullanılmaktadır. Ayrıca kontrollü salım mekanizması ile kültür bitkilerinin farklı gelişim döneminde yabancı otlarla mücadele etme fırsatı sunmakla birlikte nanoformülasyon bileşenleri sayesinde biyoherbisitlerin raf ömrünü ve etkinliğini arttırarak, kolay ve pratik uygulamasına imkân sağlamaktadır. Bu derlemede, nanoherbisitlerin yabancı ot mücadelesinde kullanım olanakları, avantajları, dezavantajları ve tarihi gelişimi hakkında bilgi verilmiştir.

Kaynakça

  • Abigail, E. A., Chidambaram, R. (2017). Nanotechnology in herbicide resistance. Nanostructured materials: fabrication to applications. IntechOpen, Rijeka, 207-212.
  • Ahn, J. K., Chung, I. M. (2000). Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. Agronomy Journal, 92(6), 1162-1167.
  • An, C., Sun, C., Li, N., Huang, B., Jiang, J., Shen, Y., Wang, C., Zhao, X., Cui, B., Wang, C., Li, X., Zhan, S., Gao, F., Zeng, Z., Cui, H., Wang, Y. (2022). Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. Journal of Nanobiotechnology, 20(1), 1-19.
  • Anderson, K. I., Hallett, S. G. (2004). Herbicidal spectrum and activity of Myrothecium verrucaria. Weed Science, 52(4), 623-627.
  • Ash, G. J. (2010). The science, art and business of successful bioherbicides. Biological Control, 52(3), 230-240.
  • Baalousha, M., How, W., Valsami-Jones, E., Lead, J. R. (2014). Overview of environmental nanoscience. In Frontiers of Nanoscience (Vol. 7, pp. 1-54). Elsevier.
  • Baalousha, M., Lead, J. R. (2009). Overview of Nanoscience in the Environment, Environmental and human health impacts of nanotechnology. Wiley-Blackwell Publishing Ltd, Hoboken, NJ, 1-25.
  • Bailey, K. L. (2014). The bioherbicide approach to weed control using plant pathogens. In Integrated Pest Management (pp. 245-266). Academic Press.
  • Bin Hussein, M. Z., Yahaya, A. H., Zainal, Z., Kian, L. H. (2005). Nanocomposite-based controlled release formulation of an herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Science and Technology of Advanced Materials, 6(8), 956.
  • Biswas, P., Wu, C. Y. (2005). Nanoparticles and the environment. Journal of the air & waste management association, 55(6), 708-746.
  • Buckley, D. H., Schmidt, T. M. (2003). Diversity and dynamics of microbial communities in soils from agro‐ecosystems. Environmental Microbiology, 5(6), 441-452.
  • Cai, X., Gu, M. (2016). Bioherbicides in organic horticulture. Horticulturae 2, 1–10.
  • Charudattan, R. (2010). A reflection on my research in weed biological control: using what we for future applications. Weed Technology, 24, 208–217.
  • Charudattan, R., Hiebert, E. (2007). A plant virus as a bioherbicide for tropical soda apple, Solanum viarum. Outlooks on Pest Management, 18(4), 167.
  • Chen, H., Yada, R. (2011). Nanotechnologies in agriculture: new tools for sustainable development. Trends in Food Science & Technology, 22(11), 585-594.
  • Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental chemistry letters, 15(1), 15-22.
  • Chi, Y., Zhang, G., Xiang, Y., Cai, D., Wu, Z. (2017). Fabrication of a temperature-controlled-release herbicide using a nanocomposite. ACS Sustainable Chemistry & Engineering, 5(6), 4969-4975.
  • Chinnamuthu, C. R., Boopathi, P. M. (2009). Nanotechnology and agroecosystem. Madras Agricultural Journal, 96(1/6), 17-31.
  • Chinnamuthu, C. R., Kokiladevi, E. (2007). Weed management through nanoherbicides. Application of nanotechnology in agriculture, 10, 978-971.
  • Christians, N., Liu, D., Unruh, J. B. (2008). The use of protein hydrolysates for weed control. In Protein Hydrolysates in Biotechnology (pp. 127-133). Springer, Dordrecht.
  • Çıracı, S., Özbay, E., Gülseren, O., Demir, H., Bayındır, M., Oral, A., Senger, T., Aydınlı, A. ve Dana, A. (2005). Türkiye’de nanoteknoloji, Tübitak Bilim ve Teknik Dergisi, Ağustos sayısı, 2005.
  • Çolak, E. Ş., Doğan, Işık. (2021). Yabancı Otlar ile Mücadelede Güncel Yöntem: Robotikler. Turkish Journal of Weed Science, 24(2), 166-176.
  • Dağ, S. S., Aykaç, V. T., Gündüz, A., Kantarcı, M., Şişman, N. (2000). Türkiye’de tarım endüstrisi ve geleceği. TMMOB-Ziraat Mühendisleri Odası, V. Türkiye Ziraat Mühendisliği Teknik Kongresi, 2. Cilt, 17-21 Ocak, Sayfa 933-958, Milli Kütüphane, Ankara.
  • Dahoumane, S. A., Jeffryes, C., Mechouet, M., Agathos, S. N. (2017). Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition. Bioengineering, 4(1), 14.
  • Dayan, F. E., Howell, J. L., Marais, J. P., Ferreira, D., Koivunen, M. (2011). Manuka oil, a natural herbicide with preemergence activity. Weed science, 59(4), 464-469.
  • Dayan, F. E., Duke, S. O. (2014). Natural compounds as next-generation herbicides. Plant physiology, 166(3), 1090-1105.
  • De Oliveira, J. L., Campos, E. V. R., Goncalves da Silva, C. M., Pasquoto, T., Lima, R., Fraceto, L. F. (2015). Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. Journal of Agricultural and Food Chemistry, 63(2), 422-432.
  • De Oliveira, C. R., Fraceto, L. F., Rizzi, G. M., Salla, R. F., Abdalla, F. C., Costa, M. J., Silva-Zacarin, E. C. M. (2016). Hepatic effects of the clomazone herbicide in both its free form and associated with chitosan-alginate nanoparticles in bullfrog tadpoles. Chemosphere, 149, 304-313.
  • Demirbilek, M.E. (2015). Tarımda ve gıdada nanoteknoloji. Gıda ve Yem Bilimi Teknolojisi Dergisi, 15, 46-53.
  • Demirel, Ö. R. (2007). Askeri malzemelerde nanoteknoloji kullanımı. Yüksek Lisans Tezi, İstanbul Ticaret Üniversitesi, Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Anabilim Dal, İstanbul.
  • Demirkan, H. (2009). Herbisitlere dayanıklılık konusunda dünyada yapılmış bildirimlerin değerlendirilmesi. Ege Üniversitesi, Ziraat Fakültesi Dergisi, 46(1), 71-78.
  • Duke, S. O., Dayan, F. E., Rimando, A. M., Schrader, K. K., Aliotta, G., Oliva, A., Romagni, J. G. (2002). Chemicals from nature for weed management. Weed science, 50(2), 138-151.
  • Duke, S. O., Owens, D. K., Dayan, F. E. (2014). The growing need for biochemical bioherbicides. In Biopesticides: State of the art and future opportunities (pp. 31-43). American Chemical Society.
  • Elizabath, A., Babychan, M., Mathew, A. M., Syriac, G. M. (2019). Application of nanotechnology in agriculture. International Journal of Pure & Applied Bioscience, 7(2), 131-139.
  • Ersöz, M., Işıtan, A., Balaban, M. (2018). Nanoteknoloji 1: Nanoteknolojinin temelleri. Nanoteknolojinin Tarihi. Denizli, Pamukkale Üniversitesi Yayınları:274.
  • Ghosh, S., Sarkar, B., Thongmee, S. (2022). Nanoherbicides for field applications. In Agricultural Nanobiotechnology (pp. 439-463). Woodhead Publishing.
  • Grillo, R., Clemente, Z., de Oliveira, J.L., Campos, E.V.R., Chalupe, V.C., Jonsson, C.M., Lima, R., Sanches, G., Nishisaka, C., Rosa, A. H., Oehlke, K., Greiner, R., Leonardo, F. (2015). Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity. Journal of Hazardous Materials, 286, 562- 572.
  • Grillo, R., dos Santos, N. Z. P., Maruyama, C.R., Rosa, A.H., de Lima, R., Fraceto, L.F. (2012). Poly (caprolactone) nanocapsules as carrier systems for herbicides: physico­ chemical characterization and genotoxicity evaluation. Journal of Hazardous Materials, 231, 1-9.
  • Hayles, J., Johnson, L., Worthley, C., Losic, D. (2017). Nanopesticides: a review of current research and perspectives. New pesticides and soil sensors, 193-225.
  • Heap I, 2022 The International Survey of Herbicide Resistant Weeds (www.weedscience.com). [Erişim 13.08.2022].
  • Hershenhorn, J., Casella, F., Vurro, M., (2016). Weed biocontrol with fungi: past, present and future, Biocontrol Science and Technology, 26:10, 1313-1328, DOI: 10.1080/09583157.2016.1209161.
  • Hubbard, M., Taylor, W. G., Bailey, K. L., Hynes, R. K. (2016). The dominant modes of action of macrocidins, bioherbicidal metabolites of Phoma macrostoma, differ between susceptible plant species. Environmental and Experimental Botany, 132, 80-91.
  • Hulkoti, N. I., Taranath, T. (2014). Biosynthesis of nanoparticles using microbes a review, Colloids and Surfaces B: Biointerfaces, 121, 474-483.
  • Imaizumi, S., Honda, M., Fujimori, T. (1999). Effect of temperature on the control of annual bluegrass (Poa annua L.) with Xanthomonas campestris pv. poae (JT-P482). Biological control, 16(1), 13-17.
  • İlyasoğlu, H., El, S. N. (2010). Nanoemülsiyonlar: Oluşumları, Yapıları ve Kollodial Salınım Sistemleri Olarak Gıda Sektöründe Kullanım Alanları, Gıda/The Journal Of Food, 35 (2), 143-150.
  • Jalil, S. U., Ansari, M. I. (2020). Role of nanomaterials in weed control and plant diseases management. In Nanomaterials for Agriculture and Forestry Applications (pp. 421-434). Elsevier.
  • Johnson, D. R., Wyse, D. L., Jones, K. J. (1996). Controlling weeds with phytopathogenic bacteria. Weed Technology, 10(3), 621-624. Kah, M., Beulke, S., Tiede, K., Hofmann, T. (2013). Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling, Critical Reviews in Environmental Science and Technology, 43:16, 1823-1867, DOI: 10.1080/10643389.2012.671750.
  • Kalaitzaki, A., Papanikolaou, N. E., Karamaouna, F., Dourtoglou, V., Xenakis, A., Papadimitriou, V. (2015). Biocompatible colloidal dispersions as potential formulations of natural pyrethrins: a structural and efficacy study. Langmuir, 31(21), 5722-5730.
  • Keiper, A. (2003). The nanotechnology revolution. The New Atlantis, (2), 17-34.
  • Khandelwal, N., Barbole, R.S., Banerjee, S.S., Chate, P., Biradar, A.V., Khandare, J., Giri, A. P. (2016). Budding trends in integrated pest management using advanced micro-and nano-materials: challenges and perspectives. Journal of Environmental Management, 84, 157-169.
  • Kremer, R. J. (2002). Bioherbicides potential successful strategies for weed control. In: Koul, O., Dhaliwal, G. (Eds.), Microbial Biopesticides. Taylor & Francis, London, pp. 307–323.
  • Kremer, R. J. (2019). Bioherbicides and nanotechnology: current status and future trends. Today and future perspectives (pp. 353-366). Academic Press.
  • Kreuter, J. (2007). Nanoparticles a historical perspective. International journal of pharmaceutics, 331(1), 1-10.
  • Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A., Kim, K. H. (2019). Nano-based smart pesticide formulations: Emerging opportunities for agriculture, Journal of Controlled Release, 294, 131-153.
  • Kumar, V. A., Uchida, T., Mizuki, T., Nakajima, Y., Katsube, Y., Hanajiri, T., Maekawa, T. (2016). Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod). Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(1), 015002.
  • Manjunatha, S. B., Biradar, D. P., Aladakatti, Y. R. (2016). Nanotechnology and its applications in agriculture: A review. Journal of Farm Sciences, 29(1), 1-13.
  • Maruyama, C. R., Guilger, M., Pascoli, M., Bileshy-José, N., Abhilash, P. C., Fraceto, L. F., De Lima, R. (2016). Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Scientific Reports, 6(1), 1-15.
  • Mengüç,Ç.(2018). Herbisit toksisitesi ve yabancı otlara karşı alternatif mücadele stratejileri. Turkish Journal ofWeed Science,21(1), 61-73.
  • Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environment international, 32(8), 967-976.
  • Morra, M. J., Popova, I. E., Boydston, R. A. (2018). Bioherbicidal activity of Sinapis alba seed meal extracts. Industrial crops and products, 115, 174-181.
  • Nel, A., Xia, T., Madler, L., Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622-627.
  • Nuruzzaman, M. D., Rahman, M. M., Liu, Y., Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of agricultural and food chemistry, 64(7), 1447-1483.
  • Ormanoğlu, N., Emekci, M., Ferizli, A. (2021). Böceklerle mücadelede nanoteknoloji. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 35(1), 181-202.
  • Önen, H. (2021). Herboloji (Yabancı Ot Bilimi), İlkeler, Kavramlar ve Uygulamalar. Adana, Türkiye, 27s. Doi: 10.13140/RG.2.2.10113.99688.
  • Pallavi, D.C., Sharma, A.K. (2017). Commercial microbial products: exploiting beneficial plant-microbe interaction. In: Singh, D.P., Singh, H.B., Prabha, R. (Eds.), Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer Nature, Singapore, pp. 607–625.
  • Perez-de-Luque, A., Hermosín, M.C. (2013). Nanotechnology and its use in agriculture. In: Bagchi, E., Bagchi, M., Moriyama, H., Shahidi, F. (Eds.), Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences. John Wiley & Sons, Ltd., Chichester, UK, pp. 383–398.
  • Perez-de-Luque, A., Rubiales, D. (2009). Nanotechnology for parasitic plant control. Pest Management Science, 65, 540- 545.
  • Pradeep, T. (2007). Nano: the essentials: understanding nanoscience and nanotechnology. New Delhi, McGraw-Hill Education.Inc: 432.
  • Puig, C. G., Reigosa, M. J., Valentao, P., Andrade, P. B., Pedrol, N. (2018). Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. Plos one, 13(2), e0192872.
  • Ragaei, M., Sabry, A. K. H. (2014). Nanotechnology for insect pest control, International journal of science, environment and technology, 3 (2), 528-545.
  • Service, R. (2003). American Chemical Society meeting. Nanomaterials show signs of toxicity, Science (New York, NY), 300 (5617), 243.
  • Shrestha, A. (2009). Potential of a black walnut (Juglans nigra) extract product (NatureCur®) as a pre-and post-emergence bioherbicide. Journal of Sustainable Agriculture, 33(8), 810-822.
  • Silva, M. S., Cocenza, D. S., Grillo, R., Melo, N. F. S., Tonello, P. S., Oliveira, L. C., Cassimiro, D. L., Rosa, A. H., Fraceto, L. F. (2011). Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. Journal of Hazardous Materials, 190(1-3): 366-374.
  • Susha, V. S., Chinnamuthu, C. R., Pandian, K. (2008). Remediation of herbicide atrazine through metal nano particle. In International Conference on Magnetic Materials and their Applications in the 21st Century (pp. 21-23).
  • Torun, H. (2017). Herbisitler ve Türkiye’deki ruhsatlı herbisitlerin güncel durumu. Turkish Journal of Weed Science, 20(2), 61-68.
  • Tunca, E. Ü. (2015). Nanoteknolojinin Temeli Nanopartiküller ve Nanopartiküllerin Fitoremediasyon. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 5(2), 23-34.
  • Turgut, O., Keskin, H. L., Avşar, A. F. (2011). What is Nanotechnology?, Turkish Journal of Medical Sciences, 5 (1), 45-49.
  • Worrall, E. A.,Hamid, A. Mody, K. T. Mitter, N. Pappu, H. R.(2018). Nanotechnology for plant disease management. Agronomy,8(12),285.
  • Yakar, Z. (2018). Nanoteknolojinin Tarihi: Nanoteknoloji 1 nanoteknolojinin temelleri. Editörler: Ersöz, M., Işıtan, A., Balaban, M., Denizli, Pamukkale Üniversitesi Yayınları, 19-30.
  • Yang, J., Cao, W., Rui, Y. (2017). Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. Journal of plant interactions, 12(1), 158-169.
  • Zhao, X., Cui, H., Wang, Y., Sun, C., Cui, B., Zeng, Z. (2017). Development strategies and prospects of nano-based smart pesticide formulation. Journal of agricultural and food chemistry, 66(26), 6504-6512.

The Role of Nanotechnology in Herbicide Formulations

Yıl 2022, Cilt: 25 Sayı: 2, 134 - 144, 31.12.2022

Öz

Chemical control methods are generally used to control weed, insects ets.. Herbicides used in the chemical control of weeds belong to the pesticide group and are the most widely used plant protection product worldwide. Today, alternative control methods to herbicides are being researched due to the formation of resistance in weeds as a result of the use of herbicides at such a high rate, excessive and indiscriminately, toxicity in cultivated plants, effects on non-target organisms due to the use of herbicides, and negative effects on the environment and human health. One of these alternative methods is the science of nanotechnology, which is one of the latest technological developments. Nanotechnology is a branch of science that provides macro-scale products by using nano-scale particles in general. Nanotechnology developed at the beginning of the 20th century and found application in many branches of science, one of these fields is weed science (herbology). Weeds can directly or indirectly damage crop plants. In order to control weeds, nanoherbicides have started to be produced and used in weed science. Thanks to the nanoherbicides preferred in the struggle; It is used to reduce the use of active substances at low doses, to apply allelochemicals effectively and easily, to reduce toxicity in crop plants, to reduce the resistance problem in weeds, and to alleviate the cost/labor burden of the producer. In addition, with its controlled release mechanism, it provides the opportunity to weed control at different developmental stages of cultivated plants, while increasing the shelf life and effectiveness of bioherbicides thanks to its nanoformulation components, allowing easy and practical application. In this review, information is given about the possibilities, advantages, disadvantages and historical development of nano herbicides in weed control.

Kaynakça

  • Abigail, E. A., Chidambaram, R. (2017). Nanotechnology in herbicide resistance. Nanostructured materials: fabrication to applications. IntechOpen, Rijeka, 207-212.
  • Ahn, J. K., Chung, I. M. (2000). Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. Agronomy Journal, 92(6), 1162-1167.
  • An, C., Sun, C., Li, N., Huang, B., Jiang, J., Shen, Y., Wang, C., Zhao, X., Cui, B., Wang, C., Li, X., Zhan, S., Gao, F., Zeng, Z., Cui, H., Wang, Y. (2022). Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. Journal of Nanobiotechnology, 20(1), 1-19.
  • Anderson, K. I., Hallett, S. G. (2004). Herbicidal spectrum and activity of Myrothecium verrucaria. Weed Science, 52(4), 623-627.
  • Ash, G. J. (2010). The science, art and business of successful bioherbicides. Biological Control, 52(3), 230-240.
  • Baalousha, M., How, W., Valsami-Jones, E., Lead, J. R. (2014). Overview of environmental nanoscience. In Frontiers of Nanoscience (Vol. 7, pp. 1-54). Elsevier.
  • Baalousha, M., Lead, J. R. (2009). Overview of Nanoscience in the Environment, Environmental and human health impacts of nanotechnology. Wiley-Blackwell Publishing Ltd, Hoboken, NJ, 1-25.
  • Bailey, K. L. (2014). The bioherbicide approach to weed control using plant pathogens. In Integrated Pest Management (pp. 245-266). Academic Press.
  • Bin Hussein, M. Z., Yahaya, A. H., Zainal, Z., Kian, L. H. (2005). Nanocomposite-based controlled release formulation of an herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Science and Technology of Advanced Materials, 6(8), 956.
  • Biswas, P., Wu, C. Y. (2005). Nanoparticles and the environment. Journal of the air & waste management association, 55(6), 708-746.
  • Buckley, D. H., Schmidt, T. M. (2003). Diversity and dynamics of microbial communities in soils from agro‐ecosystems. Environmental Microbiology, 5(6), 441-452.
  • Cai, X., Gu, M. (2016). Bioherbicides in organic horticulture. Horticulturae 2, 1–10.
  • Charudattan, R. (2010). A reflection on my research in weed biological control: using what we for future applications. Weed Technology, 24, 208–217.
  • Charudattan, R., Hiebert, E. (2007). A plant virus as a bioherbicide for tropical soda apple, Solanum viarum. Outlooks on Pest Management, 18(4), 167.
  • Chen, H., Yada, R. (2011). Nanotechnologies in agriculture: new tools for sustainable development. Trends in Food Science & Technology, 22(11), 585-594.
  • Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental chemistry letters, 15(1), 15-22.
  • Chi, Y., Zhang, G., Xiang, Y., Cai, D., Wu, Z. (2017). Fabrication of a temperature-controlled-release herbicide using a nanocomposite. ACS Sustainable Chemistry & Engineering, 5(6), 4969-4975.
  • Chinnamuthu, C. R., Boopathi, P. M. (2009). Nanotechnology and agroecosystem. Madras Agricultural Journal, 96(1/6), 17-31.
  • Chinnamuthu, C. R., Kokiladevi, E. (2007). Weed management through nanoherbicides. Application of nanotechnology in agriculture, 10, 978-971.
  • Christians, N., Liu, D., Unruh, J. B. (2008). The use of protein hydrolysates for weed control. In Protein Hydrolysates in Biotechnology (pp. 127-133). Springer, Dordrecht.
  • Çıracı, S., Özbay, E., Gülseren, O., Demir, H., Bayındır, M., Oral, A., Senger, T., Aydınlı, A. ve Dana, A. (2005). Türkiye’de nanoteknoloji, Tübitak Bilim ve Teknik Dergisi, Ağustos sayısı, 2005.
  • Çolak, E. Ş., Doğan, Işık. (2021). Yabancı Otlar ile Mücadelede Güncel Yöntem: Robotikler. Turkish Journal of Weed Science, 24(2), 166-176.
  • Dağ, S. S., Aykaç, V. T., Gündüz, A., Kantarcı, M., Şişman, N. (2000). Türkiye’de tarım endüstrisi ve geleceği. TMMOB-Ziraat Mühendisleri Odası, V. Türkiye Ziraat Mühendisliği Teknik Kongresi, 2. Cilt, 17-21 Ocak, Sayfa 933-958, Milli Kütüphane, Ankara.
  • Dahoumane, S. A., Jeffryes, C., Mechouet, M., Agathos, S. N. (2017). Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition. Bioengineering, 4(1), 14.
  • Dayan, F. E., Howell, J. L., Marais, J. P., Ferreira, D., Koivunen, M. (2011). Manuka oil, a natural herbicide with preemergence activity. Weed science, 59(4), 464-469.
  • Dayan, F. E., Duke, S. O. (2014). Natural compounds as next-generation herbicides. Plant physiology, 166(3), 1090-1105.
  • De Oliveira, J. L., Campos, E. V. R., Goncalves da Silva, C. M., Pasquoto, T., Lima, R., Fraceto, L. F. (2015). Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. Journal of Agricultural and Food Chemistry, 63(2), 422-432.
  • De Oliveira, C. R., Fraceto, L. F., Rizzi, G. M., Salla, R. F., Abdalla, F. C., Costa, M. J., Silva-Zacarin, E. C. M. (2016). Hepatic effects of the clomazone herbicide in both its free form and associated with chitosan-alginate nanoparticles in bullfrog tadpoles. Chemosphere, 149, 304-313.
  • Demirbilek, M.E. (2015). Tarımda ve gıdada nanoteknoloji. Gıda ve Yem Bilimi Teknolojisi Dergisi, 15, 46-53.
  • Demirel, Ö. R. (2007). Askeri malzemelerde nanoteknoloji kullanımı. Yüksek Lisans Tezi, İstanbul Ticaret Üniversitesi, Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Anabilim Dal, İstanbul.
  • Demirkan, H. (2009). Herbisitlere dayanıklılık konusunda dünyada yapılmış bildirimlerin değerlendirilmesi. Ege Üniversitesi, Ziraat Fakültesi Dergisi, 46(1), 71-78.
  • Duke, S. O., Dayan, F. E., Rimando, A. M., Schrader, K. K., Aliotta, G., Oliva, A., Romagni, J. G. (2002). Chemicals from nature for weed management. Weed science, 50(2), 138-151.
  • Duke, S. O., Owens, D. K., Dayan, F. E. (2014). The growing need for biochemical bioherbicides. In Biopesticides: State of the art and future opportunities (pp. 31-43). American Chemical Society.
  • Elizabath, A., Babychan, M., Mathew, A. M., Syriac, G. M. (2019). Application of nanotechnology in agriculture. International Journal of Pure & Applied Bioscience, 7(2), 131-139.
  • Ersöz, M., Işıtan, A., Balaban, M. (2018). Nanoteknoloji 1: Nanoteknolojinin temelleri. Nanoteknolojinin Tarihi. Denizli, Pamukkale Üniversitesi Yayınları:274.
  • Ghosh, S., Sarkar, B., Thongmee, S. (2022). Nanoherbicides for field applications. In Agricultural Nanobiotechnology (pp. 439-463). Woodhead Publishing.
  • Grillo, R., Clemente, Z., de Oliveira, J.L., Campos, E.V.R., Chalupe, V.C., Jonsson, C.M., Lima, R., Sanches, G., Nishisaka, C., Rosa, A. H., Oehlke, K., Greiner, R., Leonardo, F. (2015). Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity. Journal of Hazardous Materials, 286, 562- 572.
  • Grillo, R., dos Santos, N. Z. P., Maruyama, C.R., Rosa, A.H., de Lima, R., Fraceto, L.F. (2012). Poly (caprolactone) nanocapsules as carrier systems for herbicides: physico­ chemical characterization and genotoxicity evaluation. Journal of Hazardous Materials, 231, 1-9.
  • Hayles, J., Johnson, L., Worthley, C., Losic, D. (2017). Nanopesticides: a review of current research and perspectives. New pesticides and soil sensors, 193-225.
  • Heap I, 2022 The International Survey of Herbicide Resistant Weeds (www.weedscience.com). [Erişim 13.08.2022].
  • Hershenhorn, J., Casella, F., Vurro, M., (2016). Weed biocontrol with fungi: past, present and future, Biocontrol Science and Technology, 26:10, 1313-1328, DOI: 10.1080/09583157.2016.1209161.
  • Hubbard, M., Taylor, W. G., Bailey, K. L., Hynes, R. K. (2016). The dominant modes of action of macrocidins, bioherbicidal metabolites of Phoma macrostoma, differ between susceptible plant species. Environmental and Experimental Botany, 132, 80-91.
  • Hulkoti, N. I., Taranath, T. (2014). Biosynthesis of nanoparticles using microbes a review, Colloids and Surfaces B: Biointerfaces, 121, 474-483.
  • Imaizumi, S., Honda, M., Fujimori, T. (1999). Effect of temperature on the control of annual bluegrass (Poa annua L.) with Xanthomonas campestris pv. poae (JT-P482). Biological control, 16(1), 13-17.
  • İlyasoğlu, H., El, S. N. (2010). Nanoemülsiyonlar: Oluşumları, Yapıları ve Kollodial Salınım Sistemleri Olarak Gıda Sektöründe Kullanım Alanları, Gıda/The Journal Of Food, 35 (2), 143-150.
  • Jalil, S. U., Ansari, M. I. (2020). Role of nanomaterials in weed control and plant diseases management. In Nanomaterials for Agriculture and Forestry Applications (pp. 421-434). Elsevier.
  • Johnson, D. R., Wyse, D. L., Jones, K. J. (1996). Controlling weeds with phytopathogenic bacteria. Weed Technology, 10(3), 621-624. Kah, M., Beulke, S., Tiede, K., Hofmann, T. (2013). Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling, Critical Reviews in Environmental Science and Technology, 43:16, 1823-1867, DOI: 10.1080/10643389.2012.671750.
  • Kalaitzaki, A., Papanikolaou, N. E., Karamaouna, F., Dourtoglou, V., Xenakis, A., Papadimitriou, V. (2015). Biocompatible colloidal dispersions as potential formulations of natural pyrethrins: a structural and efficacy study. Langmuir, 31(21), 5722-5730.
  • Keiper, A. (2003). The nanotechnology revolution. The New Atlantis, (2), 17-34.
  • Khandelwal, N., Barbole, R.S., Banerjee, S.S., Chate, P., Biradar, A.V., Khandare, J., Giri, A. P. (2016). Budding trends in integrated pest management using advanced micro-and nano-materials: challenges and perspectives. Journal of Environmental Management, 84, 157-169.
  • Kremer, R. J. (2002). Bioherbicides potential successful strategies for weed control. In: Koul, O., Dhaliwal, G. (Eds.), Microbial Biopesticides. Taylor & Francis, London, pp. 307–323.
  • Kremer, R. J. (2019). Bioherbicides and nanotechnology: current status and future trends. Today and future perspectives (pp. 353-366). Academic Press.
  • Kreuter, J. (2007). Nanoparticles a historical perspective. International journal of pharmaceutics, 331(1), 1-10.
  • Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A., Kim, K. H. (2019). Nano-based smart pesticide formulations: Emerging opportunities for agriculture, Journal of Controlled Release, 294, 131-153.
  • Kumar, V. A., Uchida, T., Mizuki, T., Nakajima, Y., Katsube, Y., Hanajiri, T., Maekawa, T. (2016). Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod). Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(1), 015002.
  • Manjunatha, S. B., Biradar, D. P., Aladakatti, Y. R. (2016). Nanotechnology and its applications in agriculture: A review. Journal of Farm Sciences, 29(1), 1-13.
  • Maruyama, C. R., Guilger, M., Pascoli, M., Bileshy-José, N., Abhilash, P. C., Fraceto, L. F., De Lima, R. (2016). Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Scientific Reports, 6(1), 1-15.
  • Mengüç,Ç.(2018). Herbisit toksisitesi ve yabancı otlara karşı alternatif mücadele stratejileri. Turkish Journal ofWeed Science,21(1), 61-73.
  • Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environment international, 32(8), 967-976.
  • Morra, M. J., Popova, I. E., Boydston, R. A. (2018). Bioherbicidal activity of Sinapis alba seed meal extracts. Industrial crops and products, 115, 174-181.
  • Nel, A., Xia, T., Madler, L., Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622-627.
  • Nuruzzaman, M. D., Rahman, M. M., Liu, Y., Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of agricultural and food chemistry, 64(7), 1447-1483.
  • Ormanoğlu, N., Emekci, M., Ferizli, A. (2021). Böceklerle mücadelede nanoteknoloji. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 35(1), 181-202.
  • Önen, H. (2021). Herboloji (Yabancı Ot Bilimi), İlkeler, Kavramlar ve Uygulamalar. Adana, Türkiye, 27s. Doi: 10.13140/RG.2.2.10113.99688.
  • Pallavi, D.C., Sharma, A.K. (2017). Commercial microbial products: exploiting beneficial plant-microbe interaction. In: Singh, D.P., Singh, H.B., Prabha, R. (Eds.), Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer Nature, Singapore, pp. 607–625.
  • Perez-de-Luque, A., Hermosín, M.C. (2013). Nanotechnology and its use in agriculture. In: Bagchi, E., Bagchi, M., Moriyama, H., Shahidi, F. (Eds.), Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences. John Wiley & Sons, Ltd., Chichester, UK, pp. 383–398.
  • Perez-de-Luque, A., Rubiales, D. (2009). Nanotechnology for parasitic plant control. Pest Management Science, 65, 540- 545.
  • Pradeep, T. (2007). Nano: the essentials: understanding nanoscience and nanotechnology. New Delhi, McGraw-Hill Education.Inc: 432.
  • Puig, C. G., Reigosa, M. J., Valentao, P., Andrade, P. B., Pedrol, N. (2018). Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. Plos one, 13(2), e0192872.
  • Ragaei, M., Sabry, A. K. H. (2014). Nanotechnology for insect pest control, International journal of science, environment and technology, 3 (2), 528-545.
  • Service, R. (2003). American Chemical Society meeting. Nanomaterials show signs of toxicity, Science (New York, NY), 300 (5617), 243.
  • Shrestha, A. (2009). Potential of a black walnut (Juglans nigra) extract product (NatureCur®) as a pre-and post-emergence bioherbicide. Journal of Sustainable Agriculture, 33(8), 810-822.
  • Silva, M. S., Cocenza, D. S., Grillo, R., Melo, N. F. S., Tonello, P. S., Oliveira, L. C., Cassimiro, D. L., Rosa, A. H., Fraceto, L. F. (2011). Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. Journal of Hazardous Materials, 190(1-3): 366-374.
  • Susha, V. S., Chinnamuthu, C. R., Pandian, K. (2008). Remediation of herbicide atrazine through metal nano particle. In International Conference on Magnetic Materials and their Applications in the 21st Century (pp. 21-23).
  • Torun, H. (2017). Herbisitler ve Türkiye’deki ruhsatlı herbisitlerin güncel durumu. Turkish Journal of Weed Science, 20(2), 61-68.
  • Tunca, E. Ü. (2015). Nanoteknolojinin Temeli Nanopartiküller ve Nanopartiküllerin Fitoremediasyon. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 5(2), 23-34.
  • Turgut, O., Keskin, H. L., Avşar, A. F. (2011). What is Nanotechnology?, Turkish Journal of Medical Sciences, 5 (1), 45-49.
  • Worrall, E. A.,Hamid, A. Mody, K. T. Mitter, N. Pappu, H. R.(2018). Nanotechnology for plant disease management. Agronomy,8(12),285.
  • Yakar, Z. (2018). Nanoteknolojinin Tarihi: Nanoteknoloji 1 nanoteknolojinin temelleri. Editörler: Ersöz, M., Işıtan, A., Balaban, M., Denizli, Pamukkale Üniversitesi Yayınları, 19-30.
  • Yang, J., Cao, W., Rui, Y. (2017). Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. Journal of plant interactions, 12(1), 158-169.
  • Zhao, X., Cui, H., Wang, Y., Sun, C., Cui, B., Zeng, Z. (2017). Development strategies and prospects of nano-based smart pesticide formulation. Journal of agricultural and food chemistry, 66(26), 6504-6512.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Derleme
Yazarlar

Hikmet Yonat 0000-0001-7845-6647

Onur Kolören 0000-0002-3359-4904

Yayımlanma Tarihi 31 Aralık 2022
Kabul Tarihi 12 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 25 Sayı: 2

Kaynak Göster

APA Yonat, H., & Kolören, O. (2022). Herbisit Formülasyonlarında Nanoteknolojinin Rolü. Turkish Journal of Weed Science, 25(2), 134-144.

indeks_15c38e2bdcc1ed.jpg