Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2022, Cilt: 6 Sayı: 2, 202 - 236, 25.07.2022
https://doi.org/10.31807/tjwsm.1123808

Öz

Kaynakça

  • Aghaie, V., Alizadeh, H., & Afshar, A. (2020). Agent-Based hydro-economic modelling for analysis of groundwater-based irrigation Water Market mechanisms. Agricultural Water Management, 234. doi:10.1016/j.agwat.2020.106140
  • Aghaie, V., Alizadeh, H., & Afshar, A. (2020). Emergence of social norms in the cap-and-trade policy: An agent-based groundwater market. Journal of Hydrology, 588. doi:10.1016/j.jhydrol.2020.125057
  • Aguirre, R., & Nyerges, T. (2014). An Agent-Based Model of Public Participation in Sustainability Management. Journal of Artificial Societies and Social Simulation, 17(1), 7. doi:10.18564/jasss.2297
  • Akhbari, M., & Grigg, N. S. (2013). A Framework for an Agent-Based Model to Manage Water Resources Conflicts. Water Resources Management, 27(11), 4039-4052. doi:10.1007/s11269-013-0394-0
  • Al-Amin, S., Berglund, E. Z., & Larson, K. L. (2015). Agent-Based Modeling to Simulate Demand Management Strategies for Shared Groundwater Resources. In World Environmental and Water Resources Congress 2015 (pp. 2067-2072).
  • Al-Amin, S., Berglund, E. Z., & Mahinthakumar, K. (2016). Coupling Agent-Based and Groundwater Modeling to Explore Demand Management Strategies for Shared Resources. In World Environmental and Water Resources Congress 2016 (pp. 141-150).
  • Al-Amin, S., Berglund, E. Z., Mahinthakumar, G., & Larson, K. L. (2018). Assessing the effects of water restrictions on socio-hydrologic resilience for shared groundwater systems. Journal of Hydrology, 566, 872-885. doi:10.1016/j.jhydrol.2018.08.045
  • Anbari, M. J., Zarghami, M., & Nadiri, A.-A. (2021). An uncertain agent-based model for socio-ecological simulation of groundwater use in irrigation: A case study of Lake Urmia Basin, Iran. Agricultural Water Management, 249. doi:10.1016/j.agwat.2021.106796
  • Anthony, P., & Birendra, K. C. (2017). Improving irrigation water management using agent technology. New Zealand Journal of Agricultural Research, 61(4), 425-439. doi:10.1080/00288233.2017.1402788
  • Arasteh, M. A., & Farjami, Y. (2021). New hydro-economic system dynamics and agent-based modeling for sustainable urban groundwater management: A case study of Dehno, Yazd Province, Iran. Sustainable Cities and Society, 72. doi:10.1016/j.scs.2021.103078 Athanasiadis, I. N., Mentes, A. K., Mitkas, P. A., & Mylopoulos, Y. A. (2016). A Hybrid Agent-Based Model for Estimating Residential Water Demand. Simulation, 81(3), 175-187. doi:10.1177/0037549705053172
  • Aydin, M. E., & Keleş, R. (2021). A multi agent-based approach for energy efficient water resource management. Computers & Industrial Engineering, 151. doi:10.1016/j.cie.2020.106679
  • Baeza, A., Bojorquez-Tapia, L. A., Janssen, M. A., & Eakin, H. (2019). Operationalizing the feedback between institutional decision-making, socio-political infrastructure, and environmental risk in urban vulnerability analysis. J Environ Manage, 241, 407-417. doi:10.1016/j.jenvman.2019.03.138
  • Bahrami, N., Afshar, A., & Afshar, M. H. (2022). An agent-based framework for simulating interactions between reservoir operators and farmers for reservoir management with dynamic demands. Agricultural Water Management, 259. doi:10.1016/j.agwat.2021.107237
  • Bakarji, J., O’Malley, D., & Vesselinov, V. V. (2017). Agent-Based Socio-Hydrological Hybrid Modeling for Water Resource Management. Water Resources Management, 31(12), 3881-3898. doi:10.1007/s11269-017-1713-7
  • Bakhtiari, P. H., Nikoo, M. R., Izady, A., & Talebbeydokhti, N. (2020). A coupled agent-based risk-based optimization model for integrated urban water management. Sustainable Cities and Society, 53. doi:10.1016/j.scs.2019.101922
  • Barreteau, O., Bousquet, F., Millier, C., & Weber, J. (2004). Suitability of Multi-Agent Simulations to study irrigated system viability: application to case studies in the Senegal River Valley. Agricultural Systems, 80(3), 255-275. doi:10.1016/j.agsy.2003.07.005
  • Barreteau, O., & Abrami, G. (2007). Variable time scales, agent-based models, and role-playing games: The PIEPLUE river basin management game. Simulation & Gaming, 38(3), 364-381. doi:10.1177/1046878107300668
  • Barthel, R., Rojanschi, V., Wolf, J., & Braun, J. (2005). Large-scale water resources management within the framework of GLOWA-Danube. Part A: The groundwater model. Physics and Chemistry of the Earth, Parts A/B/C, 30(6), 372-382. https://doi.org/https://doi.org/10.1016/j.pce.2005.06.003
  • Bars, M. L., & Attonaty, J. M. (2001, 7-9 Nov. 2001). A multi-agent system to the common management of a renewable resource: application to water sharing. Paper presented at the Proceedings 13th IEEE International Conference on Tools with Artificial Intelligence. ICTAI 2001.
  • Becu, N., Perez, P., Walker, A., Barreteau, O., & Page, C. L. (2003). Agent based simulation of a small catchment water management in northern Thailand. Ecological Modelling, 170(2-3), 319-331. doi:10.1016/s0304-3800(03)00236-9
  • Belaqziz, S., Fazziki, A. E., Mangiarotti, S., Le Page, M., Khabba, S., Raki, S. E., . . . Jarlan, L. (2013). An Agent based Modeling for the Gravity Irrigation Management. Procedia Environmental Sciences, 19, 804-813. doi:10.1016/j.proenv.2013.06.089
  • Berglund, E. Z. (2015). Using Agent-Based Modeling for Water Resources Planning and Management. Journal of Water Resources Planning and Management, 141(11), 04015025. doi:doi:10.1061/(ASCE)WR.1943-5452.0000544
  • Bitterman, P., & Koliba, C. J. (2020). Modeling Alternative Collaborative Governance Network Designs: An Agent-Based Model of Water Governance in the Lake Champlain Basin, Vermont. Journal of Public Administration Research and Theory, 30(4), 636-655. doi:10.1093/jopart/muaa013
  • Bonté, B., Farolfi, S., Ferrand, N., Abrami, G., Diallo, M. C., Dubois, D., . . . Gaudi, W. A. (2019). Building new kinds of meta-models to analyse experimentally (companion) modelling processes in the field of natural resource management. Environmental Modelling & Software, 120. doi:10.1016/j.envsoft.2019.07.011
  • Bonabeau, E. (2001). Agent-based modeling: methods and techniques for simulating human systems. In Proceedings of National Academy of Sciences 99(3): 7280-7287.
  • Bourceret, A., Amblard, L., & Mathias, J.-D. (2022). Adapting the governance of social–ecological systems to behavioural dynamics: An agent-based model for water quality management using the theory of planned behaviour. Ecological Economics, 194. doi:10.1016/j.ecolecon.2021.107338
  • Britz, W., Ferris, M., & Kuhn, A. (2013). Modeling water allocating institutions based on Multiple Optimization Problems with Equilibrium Constraints. Environmental Modelling & Software, 46, 196-207. doi:10.1016/j.envsoft.2013.03.010
  • Castilla-Rho, J. C., Rojas, R., Andersen, M. S., Holley, C., & Mariethoz, G. (2019). Sustainable groundwater management: How long and what will it take? Global Environmental Change, 58. doi:10.1016/j.gloenvcha.2019.101972
  • Castonguay, A. C., Iftekhar, M. S., Urich, C., Bach, P. M., & Deletic, A. (2018). Integrated modelling of stormwater treatment systems uptake. Water Res, 142, 301-312. doi:10.1016/j.watres.2018.05.037
  • Castonguay, A. C., Urich, C., Iftekhar, M. S., & Deletic, A. (2018). Modelling urban water management transitions: A case of rainwater harvesting. Environmental Modelling & Software, 105, 270-285. doi:10.1016/j.envsoft.2018.05.001
  • Chen, A. (2017). Spatially explicit modelling of agricultural dynamics in semi-arid environments. Ecological Modelling, 363, 31-47. doi:10.1016/j.ecolmodel.2017.08.025
  • Cheng, H., et al., 2019. A circular economy system for breaking the development dilemma of ‘ecological fragility–economic poverty’ vicious circle: A CEEPS-SD analysis. Journal of Cleaner Production, 212, 381–392. doi:10.1016/j.jclepro.2018.12.014
  • Crooks, A. T., & Hailegiorgis, A. B. (2014). An agent-based modeling approach applied to the spread of cholera. Environmental Modelling & Software, 62, 164-177. doi:10.1016/j.envsoft.2014.08.027
  • Daloğlu, I., Nassauer, J. I., Riolo, R. L., & Scavia, D. (2014). Development of a farmer typology of agricultural conservation behavior in the American Corn Belt. Agricultural Systems, 129, 93-102. doi:10.1016/j.agsy.2014.05.007
  • Darbandsari, P., Kerachian, R., & Malakpour-Estalaki, S. (2017). An Agent-based behavioral simulation model for residential water demand management: The case-study of Tehran, Iran. Simulation Modelling Practice and Theory, 78, 51-72. doi:10.1016/j.simpat.2017.08.006
  • Darbandsari, P., Kerachian, R., Malakpour-Estalaki, S., & Khorasani, H. (2020). An agent-based conflict resolution model for urban water resources management. Sustainable Cities and Society, 57. doi:10.1016/j.scs.2020.102112
  • Ding, K. J., Gilligan, J. M., Yang, Y. C. E., Wolski, P., & Hornberger, G. M. (2021). Assessing food–energy–water resources management strategies at city scale: An agent-based modeling approach for Cape Town, South Africa. Resources, Conservation and Recycling, 170. doi:10.1016/j.resconrec.2021.105573
  • Du, E., Cai, X., Wu, F., Foster, T., & Zheng, C. (2021). Exploring the impacts of the inequality of water permit allocation and farmers’ behaviors on the performance of an agricultural water market. Journal of Hydrology, 599. doi:10.1016/j.jhydrol.2021.126303
  • Du, E., Tian, Y., Cai, X., Zheng, Y., Han, F., Li, X., . . . Zheng, C. (2022). Evaluating Distributed Policies for Conjunctive Surface Water‐Groundwater Management in Large River Basins: Water Uses Versus Hydrological Impacts. Water Resources Research, 58(1). doi:10.1029/2021wr031352
  • Elhamian, S. A. B., Rakhshandehroo, G., & Javid, A. H. (2021). Quantitative and Qualitative Optimization of Water Allocation in No Bandegan Aquifer using an Agent-based Approach. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(1), 523-534. doi:10.1007/s40996-021-00656-1
  • Farhadi, S., Nikoo, M. R., Rakhshandehroo, G. R., Akhbari, M., & Alizadeh, M. R. (2016). An agent-based-nash modeling framework for sustainable groundwater management: A case study. Agricultural Water Management, 177, 348-358. doi:10.1016/j.agwat.2016.08.018
  • Fleming, S. W. (2021). Scale-free networks, 1/f dynamics, and nonlinear conflict size scaling from an agent-based simulation model of societal-scale bilateral conflict and cooperation. Physica A: Statistical Mechanics and its Applications, 567. doi:10.1016/j.physa.2020.125678
  • Galán, J. M., López-Paredes, A., & del Olmo, R. (2009). An agent-based model for domestic water management in Valladolid metropolitan area. Water Resources Research, 45(5). doi:10.1029/2007wr006536
  • García, G. A., García, P. E., Rovere, S. L., Bert, F. E., Schmidt, F., Menéndez, Á. N., . . . Podestá, G. P. (2019). A linked modelling framework to explore interactions among climate, soil water, and land use decisions in the Argentine Pampas. Environmental Modelling & Software, 111, 459-471. doi:10.1016/j.envsoft.2018.10.013
  • Giri, S., Arbab, N. N., & Lathrop, R. G. (2018). Water security assessment of current and future scenarios through an integrated modeling framework in the Neshanic River Watershed. Journal of Hydrology, 563, 1025-1041. doi:10.1016/j.jhydrol.2018.05.046
  • Granco, G., Caldas, M., Bergtold, J., Heier Stamm, J. L., Mather, M., Sanderson, M., . . . Ramsey, S. (2022). Local environment and individuals’ beliefs: The dynamics shaping public support for sustainability policy in an agricultural landscape. J Environ Manage, 301, 113776. doi:10.1016/j.jenvman.2021.113776
  • Guo, N., Shi, C., Yan, M., Gao, X., & Wu, F. (2022). Modeling agricultural water-saving compensation policy: An ABM approach and application. Journal of Cleaner Production, 344. doi:10.1016/j.jclepro.2022.131035
  • Hampf, A. C., Carauta, M., Latynskiy, E., Libera, A. A. D., Monteiro, L., Sentelhas, P., . . . Nendel, C. (2018). The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach. Agricultural Systems, 165, 1-13. doi:10.1016/j.agsy.2018.05.009
  • Hare, M., & Deadman, P. (2004). Further towards a taxonomy of agent-based simulation models in environmental management. Mathematics and Computers in Simulation, 64(1), 25-40. doi:10.1016/s0378-4754(03)00118-6
  • Head, B.W., Xiang, W.-N., 2016. Working with wicked problems in socio-ecological systems: more awareness, greater acceptance, and better adaptation. Landsc. Urban Plann. 154, 1–3.
  • Huber, L., Bahro, N., Leitinger, G., Tappeiner, U., & Strasser, U. (2019). Agent-Based Modelling of a Coupled Water Demand and Supply System at the Catchment Scale. Sustainability, 11(21). doi:10.3390/su11216178
  • Hyun, J.-Y., Huang, S.-Y., Yang, Y.-C. E., Tidwell, V., & Macknick, J. (2019). Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions. Hydrology and Earth System Sciences, 23(5), 2261-2278. doi:10.5194/hess-23-2261-2019
  • Iftekhar, M. S., Tisdell, J. G., & Connor, J. D. (2013). Effects of competition on environmental water buyback auctions. Agricultural Water Management, 127, 59-73. doi:10.1016/j.agwat.2013.05.015
  • Isern, D., Abelló, S., & Moreno, A. (2012). Development of a multi-agent system simulation platform for irrigation scheduling with case studies for garden irrigation. Computers and Electronics in Agriculture, 87, 1-13. doi:10.1016/j.compag.2012.04.007
  • Jager W., & Gotts N., (2013), Simulating social environmental systems, Steg, L., van den Berg, A. E., & de Groot, J. I. M. (Eds.). (p. 283).BPS textbooks in psychology.Environmental psychology: An introduction. BPS Blackwell.
  • James, R., & Rosenberg, D. E. (2022). Agent‐Based Model to Manage Household Water Use Through Social‐Environmental Strategies of Encouragement and Peer Pressure. Earth’s Future, 10(2). doi:10.1029/2020ef001883
  • Janssen, M. A. (2007). Coordination in irrigation systems: An analysis of the Lansing–Kremer model of Bali. Agricultural Systems, 93(1-3), 170-190. doi:10.1016/j.agsy.2006.05.004
  • Jiménez, A.-F., Cárdenas, P.-F., & Jiménez, F. (2021). Smart water management approach for resource allocation in High-Scale irrigation systems. Agricultural Water Management, 256. doi:10.1016/j.agwat.2021.107088
  • Jiménez, A.-F., Cárdenas, P.-F., & Jiménez, F. (2022). Intelligent IoT-multiagent precision irrigation approach for improving water use efficiency in irrigation systems at farm and district scales. Computers and Electronics in Agriculture, 192. doi:10.1016/j.compag.2021.106635
  • Kadinski, L., Salcedo, C., Boccelli, D. L., Berglund, E., & Ostfeld, A. (2022). A Hybrid Data-Driven-Agent-Based Modelling Framework for Water Distribution Systems Contamination Response during COVID-19. Water, 14(7), 1088. Retrieved from https://www.mdpi.com/2073-4441/14/7/1088
  • Kaiser, K. E., Flores, A. N., & Hillis, V. (2020). Identifying emergent agent types and effective practices for portability, scalability, and intercomparison in water resource agent-based models. Environmental Modelling & Software, 127. doi:10.1016/j.envsoft.2020.104671
  • Kandiah, V. K., Berglund, E. Z., & Binder, A. R. (2019). An agent-based modeling approach to project adoption of water reuse and evaluate expansion plans within a sociotechnical water infrastructure system. Sustainable Cities and Society, 46. doi:10.1016/j.scs.2018.12.040
  • Kanta, L., & Berglund, E. (2015). Exploring Tradeoffs in Demand-Side and Supply-Side Management of Urban Water Resources Using Agent-Based Modeling and Evolutionary Computation. Systems, 3(4), 287-308. doi:10.3390/systems3040287
  • Koutiva, I., & Makropoulos, C. (2016a). Exploring the effects of domestic water management measures to water conservation attitudes using agent based modelling. Water Supply, 17(2), 552-560. doi:10.2166/ws.2016.161
  • Koutiva, I., & Makropoulos, C. (2016b). Modelling domestic water demand: An agent based approach. Environmental Modelling & Software, 79, 35-54. doi:10.1016/j.envsoft.2016.01.005
  • Koutiva, & Makropoulos. (2019). Exploring the Effects of Alternative Water Demand Management Strategies Using an Agent-Based Model. Water, 11(11). doi:10.3390/w11112216
  • le bars, M., & Attonaty, J.-M. (2001). A multi-agent system to simulate water attribution among farmers.
  • Li, Y., Khalkhali, M., Mo, W., & Lu, Z. (2021). Modeling spatial diffusion of decentralized water technologies and impacts on the urban water systems. Journal of Cleaner Production, 315. doi:10.1016/j.jclepro.2021.128169
  • Lin, Z., Lim, S. H., Lin, T., & Borders, M. (2020). Using Agent-Based Modeling for Water Resources Management in the Bakken Region. Journal of Water Resources Planning and Management, 146(1), 05019020. doi:doi:10.1061/(ASCE)WR.1943-5452.0001147
  • López-Paredes, A., Saurí, D., & Galán, J. M. (2016). Urban Water Management with Artificial Societies of Agents: The FIRMABAR Simulator. Simulation, 81(3), 189-199. doi:10.1177/0037549705053167
  • Mashhadi Ali, A., Shafiee, M. E., & Berglund, E. Z. (2017). Agent-based modeling to simulate the dynamics of urban water supply: Climate, population growth, and water shortages. Sustainable Cities and Society, 28, 420-434. doi:10.1016/j.scs.2016.10.001
  • Mariano, Dandara & Alves, Conceicao De Maria. (2020). The application of role-playing games and agent-based modelling to the collaborative water management in peri-urban communities. RBRH. 25. 10.1590/2318-0331.252020190100.
  • Markowska, J., Szali´nska, W., Dąbrowska, J., Brząkała, M., 2020. The concept of a participatory approach to water management on a reservoir in response to wicked problems. J. Environ. Manag. 259, 109626.
  • Mashhadi Ali, A., Shafiee, M. E., & Berglund, E. Z. (2017). Agent-based modeling to simulate the dynamics of urban water supply: Climate, population growth, and water shortages. Sustainable Cities and Society, 28, 420-434. doi:10.1016/j.scs.2016.10.001
  • Mewes, B. (2019). Learning agents - A unique approach to combine Machine Learning and Agent-based modelling for water resource management. https://ui.adsabs.harvard.edu/abs/2019AGUFM.H52C..02M
  • Mishra, V. K., Palleti, V. R., & Mathur, A. (2019). A modeling framework for critical infrastructure and its application in detecting cyber-attacks on a water distribution system. International Journal of Critical Infrastructure Protection, 26. doi:10.1016/j.ijcip.2019.05.001
  • Moglia, M., Perez, P., & Burn, S. (2010). Modelling an urban water system on the edge of chaos. Environmental Modelling & Software, 25(12), 1528-1538. doi:10.1016/j.envsoft.2010.05.002
  • Monroe, J., Ramsey, E., & Berglund, E. (2018). Allocating countermeasures to defend water distribution systems against terrorist attack. Reliability Engineering & System Safety, 179, 37-51. doi:10.1016/j.ress.2018.02.014
  • Murphy, J. T. (2012). Exploring complexity with the Hohokam Water Management Simulation: A middle way for archaeological modeling. Ecological Modelling, 241, 15-29. doi:10.1016/j.ecolmodel.2011.12.026
  • Murphy, J., Ozik, J., Collier, N., Altaweel, M., Lammers, R., Prusevich, A., . . . Alessa, L. (2015). Simulating regional hydrology and water management: An integrated agent-based approach.
  • Nandi, A., Megiddo, I., Ashok, A., Verma, A., & Laxminarayan, R. (2017). Reduced burden of childhood diarrheal diseases through increased access to water and sanitation in India: A modeling analysis. Soc Sci Med, 180, 181-192. doi:10.1016/j.socscimed.2016.08.049
  • Nguyen, N. P., Shortle, J. S., Reed, P. M., & Nguyen, T. T. (2013). Water quality trading with asymmetric information, uncertainty and transaction costs: A stochastic agent-based simulation. Resource and Energy Economics, 35(1), 60-90. doi:10.1016/j.reseneeco.2012.09.002
  • Nhim, T., Richter, A., & Zhu, X. (2019). The resilience of social norms of cooperation under resource scarcity and inequality — An agent-based model on sharing water over two harvesting seasons. Ecological Complexity, 40. doi:10.1016/j.ecocom.2018.06.001
  • Nhim, T., & Richter, A. (2022). Path dependencies and institutional traps in water governance – Evidence from Cambodia. Ecological Economics, 196. doi:10.1016/j.ecolecon.2022.107391
  • Nichita, C., & Oprea, M. (2007). An agent-based model for water quality control. In V. Pleşu & P. Ş. Agachi (Eds.), Computer Aided Chemical Engineering (Vol. 24, pp. 1217-1222): Elsevier.
  • Nickel, D., Barthel, R., & Braun, J. (2005). Large-scale water resources management within the framework of GLOWA-Danube—The water supply model. Physics and Chemistry of the Earth, Parts A/B/C, 30(6-7), 383-388. doi:10.1016/j.pce.2005.06.004
  • Noël, P. H., & Cai, X. (2017). On the role of individuals in models of coupled human and natural systems: Lessons from a case study in the Republican River Basin. Environmental Modelling & Software, 92, 1-16. doi:10.1016/j.envsoft.2017.02.010
  • Noori, M., Emadi, A., & Fazloula, R. (2021). An agent-based model for water allocation optimization and comparison with the game theory approach. Water Supply, 21(7), 3584-3601. doi:10.2166/ws.2021.124
  • Nouri, A., Saghafian, B., Delavar, M., & Bazargan-Lari, M. R. (2019). Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies. Water Resources Management, 33(11), 3707-3720. doi:10.1007/s11269-019-02327-3
  • Ohab-Yazdi, S. A., & Ahmadi, A. (2018). Using the agent-based model to simulate and evaluate the interaction effects of agent behaviors on groundwater resources, a case study of a sub-basin in the Zayandehroud River basin. Simulation Modelling Practice and Theory, 87, 274-292. doi:10.1016/j.simpat.2018.07.003
  • Oliva-Felipe, L., Verdaguer, M., Poch, M., Vázquez-Salceda, J., & Cortés, U. (2021). The Organisational Structure of an Agent-Based Model for the Management of Wastewater Systems. Water, 13(9). doi:10.3390/w13091258
  • Palmatier, R. W., Houston, M. B., & Hulland, J. (2018). Review articles: purpose, process, and structure. Journal of the Academy of Marketing Science, 46(1), 1-5. doi:10.1007/s11747-017-0563-4
  • Perello-Moragues, A., Poch, M., Sauri, D., Popartan, L. A., & Noriega, P. (2021). Modelling Domestic Water Use in Metropolitan Areas Using Socio-Cognitive Agents. Water, 13(8), 1024. Retrieved from https://www.mdpi.com/2073-4441/13/8/1024
  • Poch, M., Cortes, U., Lafuente, J., Colprim, J., Baeza, J., Comas, J., . . . Rodriguez-Roda, I. R. (2002). A hybrid supervisory system to support WWTP operation: implementation and validation. Water Science and Technology, 45(4-5), 289-297. doi:10.2166/wst.2002.0608
  • Ponte, B.; de la Fuente, D.; Pino, R. & Rosillo, R. (2015): “Real-Time Water Demand Forecasting System through an Agent-Based Architecture”, International Journal of Bio-Inspired Computation, vol. 7, no 3, (147-156).
  • Pouladi, P., Afshar, A., Afshar, M. H., Molajou, A., & Farahmand, H. (2019). Agent-based socio-hydrological modeling for restoration of Urmia Lake: Application of theory of planned behavior. Journal of Hydrology, 576, 736-748. doi:10.1016/j.jhydrol.2019.06.080
  • Ramsey, E. (2016). Use of a Household Survey in the Development of an Agent-Based Model to Support Water Demand Management in Jaipur, India. In World Environmental and Water Resources Congress 2016 (pp. 171-176).
  • Rixon, A., Moglia, M., & Burn, S. (2007). Chapter 4 - Exploring water conservation behaviour through participatory agent-based modelling. In A. Castelletti & R. S. Sessa (Eds.), Topics on System Analysis and Integrated Water Resources Management (pp. 73-96). Oxford: Elsevier.
  • Rojas, R., Castilla-Rho, J., Bennison, G., Bridgart, R., Prats, C., & Claro, E. (2022). Participatory and Integrated Modelling under Contentious Water Use in Semiarid Basins. Hydrology, 9(3). doi:10.3390/hydrology9030049
  • Saqalli, M., Thiriot, S., & Amblard, F. (2010). Investigating social conflicts linked to water resources trhough agent-based modelling. NATO Science for Peace and security series, 75, 142-157. Retrieved from https://halshs.archives-ouvertes.fr/halshs-00918476
  • Schlüter, M., & Pahl-Wostl, C. (2007). Mechanisms of Resilience in Common-pool Resource Management Systems an Agent-based Model of Water Use in a River Basin. Ecology and Society, 12(2). Retrieved from http://www.jstor.org/stable/26267867
  • Schroeder, O. B., Manez, M., & Jeffrey, P. (2009). The use of multi-agent based models to support water resources management The Moroccan case study. Abingdon: Routledge.
  • Schwarz, N., & Ernst, A. (2009). Agent-based modeling of the diffusion of environmental innovations — An empirical approach. Technological Forecasting and Social Change, 76(4), 497-511. doi:10.1016/j.techfore.2008.03.024
  • Shafiee, M. E., & Berglund, E. Z. (2016). Agent-based modeling and evolutionary computation for disseminating public advisories about hazardous material emergencies. Computers, Environment and Urban Systems, 57, 12-25. doi:10.1016/j.compenvurbsys.2016.01.001
  • Smajgl, A., Heckbert, S., Ward, J., & Straton, A. (2009). Simulating impacts of water trading in an institutional perspective. Environmental Modelling & Software, 24(2), 191-201. doi:10.1016/j.envsoft.2008.07.005
  • Strickling, H., DiCarlo, M. F., Shafiee, M. E., & Berglund, E. (2020). Simulation of containment and wireless emergency alerts within targeted pressure zones for water contamination management. Sustainable Cities and Society, 52. doi:10.1016/j.scs.2019.101820
  • Tamburino, L., Di Baldassarre, G., & Vico, G. (2020). Water management for irrigation, crop yield and social attitudes: a socio-agricultural agent-based model to explore a collective action problem. Hydrological Sciences Journal, 65(11), 1815-1829. doi:10.1080/02626667.2020.1769103
  • Tillman, D. E., Larsen, T. A., Pahl-Wostl, C., & Gujer, W. (2005). Simulating development strategies for water supply systems. Journal of Hydroinformatics, 7(1), 41-51. doi:10.2166/hydro.2005.0005
  • Thompson, J. R., Frezza, D., Necioglu, B., Cohen, M. L., Hoffman, K., & Rosfjord, K. (2019). Interdependent Critical Infrastructure Model (ICIM): An agent-based model of power and water infrastructure. International Journal of Critical Infrastructure Protection, 24, 144-165. doi:10.1016/j.ijcip.2018.12.002
  • Tomičić, I., & Schatten, M. (2016). Agent-based framework for modeling and simulation of resources in self-sustainable human settlements: a case study on water management in an eco-village community in Croatia. International Journal of Sustainable Development & World Ecology, 23(6), 504-513. doi:10.1080/13504509.2016.1153527
  • Van Oel, P. R., & Van der Veen, A. (2011). Using agent-based modeling to depict basin closure in the Naivasha basin, Kenya: a framework of analysis. Procedia Environmental Sciences, 7, 32-37. doi:10.1016/j.proenv.2011.07.007
  • Wang, H., Zhang, J., & Zeng, W. (2018). Intelligent simulation of aquatic environment economic policy coupled ABM and SD models. Sci Total Environ, 618, 1160-1172. doi:10.1016/j.scitotenv.2017.09.184
  • Wang, Y., Zhou, Y., Franz, K., Zhang, X., Ding, K. J., Jia, G., & Yuan, X. (2021). An agent-based framework for high-resolution modeling of domestic water use. Resources, Conservation and Recycling, 169. doi:10.1016/j.resconrec.2021.105520
  • Watson, R., Wilson, H. N., Smart, P., & Macdonald, E. K. (2018). Harnessing Difference: A Capability-Based Framework for Stakeholder Engagement in Environmental Innovation. Journal of Product Innovation Management, 35(2), 254-279. doi:https://doi.org/10.1111/jpim.12394
  • Wise, S., & Crooks, A. T. (2012). Agent-based modeling for community resource management: Acequia-based agriculture. Computers, Environment and Urban Systems, 36(6), 562-572. doi:10.1016/j.compenvurbsys.2012.08.004
  • Wu, H., Bolte, J. P., Hulse, D., & Johnson, B. R. (2015). A scenario-based approach to integrating flow-ecology research with watershed development planning. Landscape and Urban Planning, 144, 74-89. doi:10.1016/j.landurbplan.2015.08.012
  • Xiao, Y., Fang, L., & Hipel, K. (2018). Centralized and Decentralized Approaches to Water Demand Management. Sustainability, 10(10). doi:10.3390/su10103466
  • Yang, J., Yang, Y. C. E., Chang, J., Zhang, J., & Yao, J. (2019). Impact of dam development and climate change on hydroecological conditions and natural hazard risk in the Mekong River Basin. Journal of Hydrology, 579. doi:10.1016/j.jhydrol.2019.124177
  • Yang, Y. C. E., Son, K., Hung, F., & Tidwell, V. (2020). Impact of climate change on adaptive management decisions in the face of water scarcity. Journal of Hydrology, 588. doi:10.1016/j.jhydrol.2020.125015
  • Yuan, S., Li, X., & Du, E. (2021). Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies. Agricultural Water Management, 247. doi:10.1016/j.agwat.2020.106693
  • Yuan, X.-C., Wei, Y.-M., Pan, S.-Y., & Jin, J.-L. (2014). Urban Household Water Demand in Beijing by 2020: An Agent-Based Model. Water Resources Management, 28(10), 2967-2980. doi:10.1007/s11269-014-0649-4
  • Zamenian, H., & Abraham, D. M. (2020). An Agent-Based Simulation Model for Assessment of Water Consumption Patterns during Water Rate Increase Events. In Construction Research Congress 2020 (pp. 800-808).
  • Zhang, P., Peeta, S., & Friesz, T. (2005). Dynamic Game Theoretic Model of Multi-Layer Infrastructure Networks. Networks and Spatial Economics, 5(2), 147-178. doi:10.1007/s11067-005-2627-0
  • Zhang, Y., Wu, Y., Yu, H., Dong, Z., & Zhang, B. (2013). Trade-offs in designing water pollution trading policy with multiple objectives: A case study in the Tai Lake Basin, China. Environmental Science & Policy, 33, 295-307. doi:10.1016/j.envsci.2013.07.002
  • Zhao, J., Cai, X., & Wang, Z. (2013). Comparing administered and market-based water allocation systems through a consistent agent-based modeling framework. J Environ Manage, 123, 120-130. doi:10.1016/j.jenvman.2013.03.005
  • Zolfagharipoor, M. A., & Ahmadi, A. (2021). Agent-based modeling of participants’ behaviors in an inter-sectoral groundwater market. J Environ Manage, 299, 113560. doi:10.1016/j.jenvman.2021.113560

Agent-Based Approach on Water Resources Management: A Modified Systematic Review

Yıl 2022, Cilt: 6 Sayı: 2, 202 - 236, 25.07.2022
https://doi.org/10.31807/tjwsm.1123808

Öz

Social, economic, and ecological dimensions of water resources make water management a highly complex domain related to many intertwined human-nature systems. Therefore, the decision and implementation of sustainable policies require following the evidence-based approach. Agent-Based Modeling and Simulation is one of the latest computer-aided modeling and simulation applications widely used to understand the phenomena associated with water-related/human-oriented engineering systems. In this study, conducting a modified systematic review approach, a field-specific review of the 128 articles on water resources management with Agent-Based Modeling was presented. Application areas of Agent-Based Modeling in water resources management and examples of its use as a decision support tool were evaluated. As an integrative systematic review of Web of Science, Science Direct, and Google Scholar, this study summarizes the leading work of Agent-Based Modeling applications on water resources management. Current trends show that water research professionals have often used Agent-Based Modeling as a social simulation tool. Due to its role in facilitating interdisciplinary research, its application area is widening. However, there is a need for a comprehensible and open share of application-oriented information to guide the scientific community.

Kaynakça

  • Aghaie, V., Alizadeh, H., & Afshar, A. (2020). Agent-Based hydro-economic modelling for analysis of groundwater-based irrigation Water Market mechanisms. Agricultural Water Management, 234. doi:10.1016/j.agwat.2020.106140
  • Aghaie, V., Alizadeh, H., & Afshar, A. (2020). Emergence of social norms in the cap-and-trade policy: An agent-based groundwater market. Journal of Hydrology, 588. doi:10.1016/j.jhydrol.2020.125057
  • Aguirre, R., & Nyerges, T. (2014). An Agent-Based Model of Public Participation in Sustainability Management. Journal of Artificial Societies and Social Simulation, 17(1), 7. doi:10.18564/jasss.2297
  • Akhbari, M., & Grigg, N. S. (2013). A Framework for an Agent-Based Model to Manage Water Resources Conflicts. Water Resources Management, 27(11), 4039-4052. doi:10.1007/s11269-013-0394-0
  • Al-Amin, S., Berglund, E. Z., & Larson, K. L. (2015). Agent-Based Modeling to Simulate Demand Management Strategies for Shared Groundwater Resources. In World Environmental and Water Resources Congress 2015 (pp. 2067-2072).
  • Al-Amin, S., Berglund, E. Z., & Mahinthakumar, K. (2016). Coupling Agent-Based and Groundwater Modeling to Explore Demand Management Strategies for Shared Resources. In World Environmental and Water Resources Congress 2016 (pp. 141-150).
  • Al-Amin, S., Berglund, E. Z., Mahinthakumar, G., & Larson, K. L. (2018). Assessing the effects of water restrictions on socio-hydrologic resilience for shared groundwater systems. Journal of Hydrology, 566, 872-885. doi:10.1016/j.jhydrol.2018.08.045
  • Anbari, M. J., Zarghami, M., & Nadiri, A.-A. (2021). An uncertain agent-based model for socio-ecological simulation of groundwater use in irrigation: A case study of Lake Urmia Basin, Iran. Agricultural Water Management, 249. doi:10.1016/j.agwat.2021.106796
  • Anthony, P., & Birendra, K. C. (2017). Improving irrigation water management using agent technology. New Zealand Journal of Agricultural Research, 61(4), 425-439. doi:10.1080/00288233.2017.1402788
  • Arasteh, M. A., & Farjami, Y. (2021). New hydro-economic system dynamics and agent-based modeling for sustainable urban groundwater management: A case study of Dehno, Yazd Province, Iran. Sustainable Cities and Society, 72. doi:10.1016/j.scs.2021.103078 Athanasiadis, I. N., Mentes, A. K., Mitkas, P. A., & Mylopoulos, Y. A. (2016). A Hybrid Agent-Based Model for Estimating Residential Water Demand. Simulation, 81(3), 175-187. doi:10.1177/0037549705053172
  • Aydin, M. E., & Keleş, R. (2021). A multi agent-based approach for energy efficient water resource management. Computers & Industrial Engineering, 151. doi:10.1016/j.cie.2020.106679
  • Baeza, A., Bojorquez-Tapia, L. A., Janssen, M. A., & Eakin, H. (2019). Operationalizing the feedback between institutional decision-making, socio-political infrastructure, and environmental risk in urban vulnerability analysis. J Environ Manage, 241, 407-417. doi:10.1016/j.jenvman.2019.03.138
  • Bahrami, N., Afshar, A., & Afshar, M. H. (2022). An agent-based framework for simulating interactions between reservoir operators and farmers for reservoir management with dynamic demands. Agricultural Water Management, 259. doi:10.1016/j.agwat.2021.107237
  • Bakarji, J., O’Malley, D., & Vesselinov, V. V. (2017). Agent-Based Socio-Hydrological Hybrid Modeling for Water Resource Management. Water Resources Management, 31(12), 3881-3898. doi:10.1007/s11269-017-1713-7
  • Bakhtiari, P. H., Nikoo, M. R., Izady, A., & Talebbeydokhti, N. (2020). A coupled agent-based risk-based optimization model for integrated urban water management. Sustainable Cities and Society, 53. doi:10.1016/j.scs.2019.101922
  • Barreteau, O., Bousquet, F., Millier, C., & Weber, J. (2004). Suitability of Multi-Agent Simulations to study irrigated system viability: application to case studies in the Senegal River Valley. Agricultural Systems, 80(3), 255-275. doi:10.1016/j.agsy.2003.07.005
  • Barreteau, O., & Abrami, G. (2007). Variable time scales, agent-based models, and role-playing games: The PIEPLUE river basin management game. Simulation & Gaming, 38(3), 364-381. doi:10.1177/1046878107300668
  • Barthel, R., Rojanschi, V., Wolf, J., & Braun, J. (2005). Large-scale water resources management within the framework of GLOWA-Danube. Part A: The groundwater model. Physics and Chemistry of the Earth, Parts A/B/C, 30(6), 372-382. https://doi.org/https://doi.org/10.1016/j.pce.2005.06.003
  • Bars, M. L., & Attonaty, J. M. (2001, 7-9 Nov. 2001). A multi-agent system to the common management of a renewable resource: application to water sharing. Paper presented at the Proceedings 13th IEEE International Conference on Tools with Artificial Intelligence. ICTAI 2001.
  • Becu, N., Perez, P., Walker, A., Barreteau, O., & Page, C. L. (2003). Agent based simulation of a small catchment water management in northern Thailand. Ecological Modelling, 170(2-3), 319-331. doi:10.1016/s0304-3800(03)00236-9
  • Belaqziz, S., Fazziki, A. E., Mangiarotti, S., Le Page, M., Khabba, S., Raki, S. E., . . . Jarlan, L. (2013). An Agent based Modeling for the Gravity Irrigation Management. Procedia Environmental Sciences, 19, 804-813. doi:10.1016/j.proenv.2013.06.089
  • Berglund, E. Z. (2015). Using Agent-Based Modeling for Water Resources Planning and Management. Journal of Water Resources Planning and Management, 141(11), 04015025. doi:doi:10.1061/(ASCE)WR.1943-5452.0000544
  • Bitterman, P., & Koliba, C. J. (2020). Modeling Alternative Collaborative Governance Network Designs: An Agent-Based Model of Water Governance in the Lake Champlain Basin, Vermont. Journal of Public Administration Research and Theory, 30(4), 636-655. doi:10.1093/jopart/muaa013
  • Bonté, B., Farolfi, S., Ferrand, N., Abrami, G., Diallo, M. C., Dubois, D., . . . Gaudi, W. A. (2019). Building new kinds of meta-models to analyse experimentally (companion) modelling processes in the field of natural resource management. Environmental Modelling & Software, 120. doi:10.1016/j.envsoft.2019.07.011
  • Bonabeau, E. (2001). Agent-based modeling: methods and techniques for simulating human systems. In Proceedings of National Academy of Sciences 99(3): 7280-7287.
  • Bourceret, A., Amblard, L., & Mathias, J.-D. (2022). Adapting the governance of social–ecological systems to behavioural dynamics: An agent-based model for water quality management using the theory of planned behaviour. Ecological Economics, 194. doi:10.1016/j.ecolecon.2021.107338
  • Britz, W., Ferris, M., & Kuhn, A. (2013). Modeling water allocating institutions based on Multiple Optimization Problems with Equilibrium Constraints. Environmental Modelling & Software, 46, 196-207. doi:10.1016/j.envsoft.2013.03.010
  • Castilla-Rho, J. C., Rojas, R., Andersen, M. S., Holley, C., & Mariethoz, G. (2019). Sustainable groundwater management: How long and what will it take? Global Environmental Change, 58. doi:10.1016/j.gloenvcha.2019.101972
  • Castonguay, A. C., Iftekhar, M. S., Urich, C., Bach, P. M., & Deletic, A. (2018). Integrated modelling of stormwater treatment systems uptake. Water Res, 142, 301-312. doi:10.1016/j.watres.2018.05.037
  • Castonguay, A. C., Urich, C., Iftekhar, M. S., & Deletic, A. (2018). Modelling urban water management transitions: A case of rainwater harvesting. Environmental Modelling & Software, 105, 270-285. doi:10.1016/j.envsoft.2018.05.001
  • Chen, A. (2017). Spatially explicit modelling of agricultural dynamics in semi-arid environments. Ecological Modelling, 363, 31-47. doi:10.1016/j.ecolmodel.2017.08.025
  • Cheng, H., et al., 2019. A circular economy system for breaking the development dilemma of ‘ecological fragility–economic poverty’ vicious circle: A CEEPS-SD analysis. Journal of Cleaner Production, 212, 381–392. doi:10.1016/j.jclepro.2018.12.014
  • Crooks, A. T., & Hailegiorgis, A. B. (2014). An agent-based modeling approach applied to the spread of cholera. Environmental Modelling & Software, 62, 164-177. doi:10.1016/j.envsoft.2014.08.027
  • Daloğlu, I., Nassauer, J. I., Riolo, R. L., & Scavia, D. (2014). Development of a farmer typology of agricultural conservation behavior in the American Corn Belt. Agricultural Systems, 129, 93-102. doi:10.1016/j.agsy.2014.05.007
  • Darbandsari, P., Kerachian, R., & Malakpour-Estalaki, S. (2017). An Agent-based behavioral simulation model for residential water demand management: The case-study of Tehran, Iran. Simulation Modelling Practice and Theory, 78, 51-72. doi:10.1016/j.simpat.2017.08.006
  • Darbandsari, P., Kerachian, R., Malakpour-Estalaki, S., & Khorasani, H. (2020). An agent-based conflict resolution model for urban water resources management. Sustainable Cities and Society, 57. doi:10.1016/j.scs.2020.102112
  • Ding, K. J., Gilligan, J. M., Yang, Y. C. E., Wolski, P., & Hornberger, G. M. (2021). Assessing food–energy–water resources management strategies at city scale: An agent-based modeling approach for Cape Town, South Africa. Resources, Conservation and Recycling, 170. doi:10.1016/j.resconrec.2021.105573
  • Du, E., Cai, X., Wu, F., Foster, T., & Zheng, C. (2021). Exploring the impacts of the inequality of water permit allocation and farmers’ behaviors on the performance of an agricultural water market. Journal of Hydrology, 599. doi:10.1016/j.jhydrol.2021.126303
  • Du, E., Tian, Y., Cai, X., Zheng, Y., Han, F., Li, X., . . . Zheng, C. (2022). Evaluating Distributed Policies for Conjunctive Surface Water‐Groundwater Management in Large River Basins: Water Uses Versus Hydrological Impacts. Water Resources Research, 58(1). doi:10.1029/2021wr031352
  • Elhamian, S. A. B., Rakhshandehroo, G., & Javid, A. H. (2021). Quantitative and Qualitative Optimization of Water Allocation in No Bandegan Aquifer using an Agent-based Approach. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(1), 523-534. doi:10.1007/s40996-021-00656-1
  • Farhadi, S., Nikoo, M. R., Rakhshandehroo, G. R., Akhbari, M., & Alizadeh, M. R. (2016). An agent-based-nash modeling framework for sustainable groundwater management: A case study. Agricultural Water Management, 177, 348-358. doi:10.1016/j.agwat.2016.08.018
  • Fleming, S. W. (2021). Scale-free networks, 1/f dynamics, and nonlinear conflict size scaling from an agent-based simulation model of societal-scale bilateral conflict and cooperation. Physica A: Statistical Mechanics and its Applications, 567. doi:10.1016/j.physa.2020.125678
  • Galán, J. M., López-Paredes, A., & del Olmo, R. (2009). An agent-based model for domestic water management in Valladolid metropolitan area. Water Resources Research, 45(5). doi:10.1029/2007wr006536
  • García, G. A., García, P. E., Rovere, S. L., Bert, F. E., Schmidt, F., Menéndez, Á. N., . . . Podestá, G. P. (2019). A linked modelling framework to explore interactions among climate, soil water, and land use decisions in the Argentine Pampas. Environmental Modelling & Software, 111, 459-471. doi:10.1016/j.envsoft.2018.10.013
  • Giri, S., Arbab, N. N., & Lathrop, R. G. (2018). Water security assessment of current and future scenarios through an integrated modeling framework in the Neshanic River Watershed. Journal of Hydrology, 563, 1025-1041. doi:10.1016/j.jhydrol.2018.05.046
  • Granco, G., Caldas, M., Bergtold, J., Heier Stamm, J. L., Mather, M., Sanderson, M., . . . Ramsey, S. (2022). Local environment and individuals’ beliefs: The dynamics shaping public support for sustainability policy in an agricultural landscape. J Environ Manage, 301, 113776. doi:10.1016/j.jenvman.2021.113776
  • Guo, N., Shi, C., Yan, M., Gao, X., & Wu, F. (2022). Modeling agricultural water-saving compensation policy: An ABM approach and application. Journal of Cleaner Production, 344. doi:10.1016/j.jclepro.2022.131035
  • Hampf, A. C., Carauta, M., Latynskiy, E., Libera, A. A. D., Monteiro, L., Sentelhas, P., . . . Nendel, C. (2018). The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach. Agricultural Systems, 165, 1-13. doi:10.1016/j.agsy.2018.05.009
  • Hare, M., & Deadman, P. (2004). Further towards a taxonomy of agent-based simulation models in environmental management. Mathematics and Computers in Simulation, 64(1), 25-40. doi:10.1016/s0378-4754(03)00118-6
  • Head, B.W., Xiang, W.-N., 2016. Working with wicked problems in socio-ecological systems: more awareness, greater acceptance, and better adaptation. Landsc. Urban Plann. 154, 1–3.
  • Huber, L., Bahro, N., Leitinger, G., Tappeiner, U., & Strasser, U. (2019). Agent-Based Modelling of a Coupled Water Demand and Supply System at the Catchment Scale. Sustainability, 11(21). doi:10.3390/su11216178
  • Hyun, J.-Y., Huang, S.-Y., Yang, Y.-C. E., Tidwell, V., & Macknick, J. (2019). Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions. Hydrology and Earth System Sciences, 23(5), 2261-2278. doi:10.5194/hess-23-2261-2019
  • Iftekhar, M. S., Tisdell, J. G., & Connor, J. D. (2013). Effects of competition on environmental water buyback auctions. Agricultural Water Management, 127, 59-73. doi:10.1016/j.agwat.2013.05.015
  • Isern, D., Abelló, S., & Moreno, A. (2012). Development of a multi-agent system simulation platform for irrigation scheduling with case studies for garden irrigation. Computers and Electronics in Agriculture, 87, 1-13. doi:10.1016/j.compag.2012.04.007
  • Jager W., & Gotts N., (2013), Simulating social environmental systems, Steg, L., van den Berg, A. E., & de Groot, J. I. M. (Eds.). (p. 283).BPS textbooks in psychology.Environmental psychology: An introduction. BPS Blackwell.
  • James, R., & Rosenberg, D. E. (2022). Agent‐Based Model to Manage Household Water Use Through Social‐Environmental Strategies of Encouragement and Peer Pressure. Earth’s Future, 10(2). doi:10.1029/2020ef001883
  • Janssen, M. A. (2007). Coordination in irrigation systems: An analysis of the Lansing–Kremer model of Bali. Agricultural Systems, 93(1-3), 170-190. doi:10.1016/j.agsy.2006.05.004
  • Jiménez, A.-F., Cárdenas, P.-F., & Jiménez, F. (2021). Smart water management approach for resource allocation in High-Scale irrigation systems. Agricultural Water Management, 256. doi:10.1016/j.agwat.2021.107088
  • Jiménez, A.-F., Cárdenas, P.-F., & Jiménez, F. (2022). Intelligent IoT-multiagent precision irrigation approach for improving water use efficiency in irrigation systems at farm and district scales. Computers and Electronics in Agriculture, 192. doi:10.1016/j.compag.2021.106635
  • Kadinski, L., Salcedo, C., Boccelli, D. L., Berglund, E., & Ostfeld, A. (2022). A Hybrid Data-Driven-Agent-Based Modelling Framework for Water Distribution Systems Contamination Response during COVID-19. Water, 14(7), 1088. Retrieved from https://www.mdpi.com/2073-4441/14/7/1088
  • Kaiser, K. E., Flores, A. N., & Hillis, V. (2020). Identifying emergent agent types and effective practices for portability, scalability, and intercomparison in water resource agent-based models. Environmental Modelling & Software, 127. doi:10.1016/j.envsoft.2020.104671
  • Kandiah, V. K., Berglund, E. Z., & Binder, A. R. (2019). An agent-based modeling approach to project adoption of water reuse and evaluate expansion plans within a sociotechnical water infrastructure system. Sustainable Cities and Society, 46. doi:10.1016/j.scs.2018.12.040
  • Kanta, L., & Berglund, E. (2015). Exploring Tradeoffs in Demand-Side and Supply-Side Management of Urban Water Resources Using Agent-Based Modeling and Evolutionary Computation. Systems, 3(4), 287-308. doi:10.3390/systems3040287
  • Koutiva, I., & Makropoulos, C. (2016a). Exploring the effects of domestic water management measures to water conservation attitudes using agent based modelling. Water Supply, 17(2), 552-560. doi:10.2166/ws.2016.161
  • Koutiva, I., & Makropoulos, C. (2016b). Modelling domestic water demand: An agent based approach. Environmental Modelling & Software, 79, 35-54. doi:10.1016/j.envsoft.2016.01.005
  • Koutiva, & Makropoulos. (2019). Exploring the Effects of Alternative Water Demand Management Strategies Using an Agent-Based Model. Water, 11(11). doi:10.3390/w11112216
  • le bars, M., & Attonaty, J.-M. (2001). A multi-agent system to simulate water attribution among farmers.
  • Li, Y., Khalkhali, M., Mo, W., & Lu, Z. (2021). Modeling spatial diffusion of decentralized water technologies and impacts on the urban water systems. Journal of Cleaner Production, 315. doi:10.1016/j.jclepro.2021.128169
  • Lin, Z., Lim, S. H., Lin, T., & Borders, M. (2020). Using Agent-Based Modeling for Water Resources Management in the Bakken Region. Journal of Water Resources Planning and Management, 146(1), 05019020. doi:doi:10.1061/(ASCE)WR.1943-5452.0001147
  • López-Paredes, A., Saurí, D., & Galán, J. M. (2016). Urban Water Management with Artificial Societies of Agents: The FIRMABAR Simulator. Simulation, 81(3), 189-199. doi:10.1177/0037549705053167
  • Mashhadi Ali, A., Shafiee, M. E., & Berglund, E. Z. (2017). Agent-based modeling to simulate the dynamics of urban water supply: Climate, population growth, and water shortages. Sustainable Cities and Society, 28, 420-434. doi:10.1016/j.scs.2016.10.001
  • Mariano, Dandara & Alves, Conceicao De Maria. (2020). The application of role-playing games and agent-based modelling to the collaborative water management in peri-urban communities. RBRH. 25. 10.1590/2318-0331.252020190100.
  • Markowska, J., Szali´nska, W., Dąbrowska, J., Brząkała, M., 2020. The concept of a participatory approach to water management on a reservoir in response to wicked problems. J. Environ. Manag. 259, 109626.
  • Mashhadi Ali, A., Shafiee, M. E., & Berglund, E. Z. (2017). Agent-based modeling to simulate the dynamics of urban water supply: Climate, population growth, and water shortages. Sustainable Cities and Society, 28, 420-434. doi:10.1016/j.scs.2016.10.001
  • Mewes, B. (2019). Learning agents - A unique approach to combine Machine Learning and Agent-based modelling for water resource management. https://ui.adsabs.harvard.edu/abs/2019AGUFM.H52C..02M
  • Mishra, V. K., Palleti, V. R., & Mathur, A. (2019). A modeling framework for critical infrastructure and its application in detecting cyber-attacks on a water distribution system. International Journal of Critical Infrastructure Protection, 26. doi:10.1016/j.ijcip.2019.05.001
  • Moglia, M., Perez, P., & Burn, S. (2010). Modelling an urban water system on the edge of chaos. Environmental Modelling & Software, 25(12), 1528-1538. doi:10.1016/j.envsoft.2010.05.002
  • Monroe, J., Ramsey, E., & Berglund, E. (2018). Allocating countermeasures to defend water distribution systems against terrorist attack. Reliability Engineering & System Safety, 179, 37-51. doi:10.1016/j.ress.2018.02.014
  • Murphy, J. T. (2012). Exploring complexity with the Hohokam Water Management Simulation: A middle way for archaeological modeling. Ecological Modelling, 241, 15-29. doi:10.1016/j.ecolmodel.2011.12.026
  • Murphy, J., Ozik, J., Collier, N., Altaweel, M., Lammers, R., Prusevich, A., . . . Alessa, L. (2015). Simulating regional hydrology and water management: An integrated agent-based approach.
  • Nandi, A., Megiddo, I., Ashok, A., Verma, A., & Laxminarayan, R. (2017). Reduced burden of childhood diarrheal diseases through increased access to water and sanitation in India: A modeling analysis. Soc Sci Med, 180, 181-192. doi:10.1016/j.socscimed.2016.08.049
  • Nguyen, N. P., Shortle, J. S., Reed, P. M., & Nguyen, T. T. (2013). Water quality trading with asymmetric information, uncertainty and transaction costs: A stochastic agent-based simulation. Resource and Energy Economics, 35(1), 60-90. doi:10.1016/j.reseneeco.2012.09.002
  • Nhim, T., Richter, A., & Zhu, X. (2019). The resilience of social norms of cooperation under resource scarcity and inequality — An agent-based model on sharing water over two harvesting seasons. Ecological Complexity, 40. doi:10.1016/j.ecocom.2018.06.001
  • Nhim, T., & Richter, A. (2022). Path dependencies and institutional traps in water governance – Evidence from Cambodia. Ecological Economics, 196. doi:10.1016/j.ecolecon.2022.107391
  • Nichita, C., & Oprea, M. (2007). An agent-based model for water quality control. In V. Pleşu & P. Ş. Agachi (Eds.), Computer Aided Chemical Engineering (Vol. 24, pp. 1217-1222): Elsevier.
  • Nickel, D., Barthel, R., & Braun, J. (2005). Large-scale water resources management within the framework of GLOWA-Danube—The water supply model. Physics and Chemistry of the Earth, Parts A/B/C, 30(6-7), 383-388. doi:10.1016/j.pce.2005.06.004
  • Noël, P. H., & Cai, X. (2017). On the role of individuals in models of coupled human and natural systems: Lessons from a case study in the Republican River Basin. Environmental Modelling & Software, 92, 1-16. doi:10.1016/j.envsoft.2017.02.010
  • Noori, M., Emadi, A., & Fazloula, R. (2021). An agent-based model for water allocation optimization and comparison with the game theory approach. Water Supply, 21(7), 3584-3601. doi:10.2166/ws.2021.124
  • Nouri, A., Saghafian, B., Delavar, M., & Bazargan-Lari, M. R. (2019). Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies. Water Resources Management, 33(11), 3707-3720. doi:10.1007/s11269-019-02327-3
  • Ohab-Yazdi, S. A., & Ahmadi, A. (2018). Using the agent-based model to simulate and evaluate the interaction effects of agent behaviors on groundwater resources, a case study of a sub-basin in the Zayandehroud River basin. Simulation Modelling Practice and Theory, 87, 274-292. doi:10.1016/j.simpat.2018.07.003
  • Oliva-Felipe, L., Verdaguer, M., Poch, M., Vázquez-Salceda, J., & Cortés, U. (2021). The Organisational Structure of an Agent-Based Model for the Management of Wastewater Systems. Water, 13(9). doi:10.3390/w13091258
  • Palmatier, R. W., Houston, M. B., & Hulland, J. (2018). Review articles: purpose, process, and structure. Journal of the Academy of Marketing Science, 46(1), 1-5. doi:10.1007/s11747-017-0563-4
  • Perello-Moragues, A., Poch, M., Sauri, D., Popartan, L. A., & Noriega, P. (2021). Modelling Domestic Water Use in Metropolitan Areas Using Socio-Cognitive Agents. Water, 13(8), 1024. Retrieved from https://www.mdpi.com/2073-4441/13/8/1024
  • Poch, M., Cortes, U., Lafuente, J., Colprim, J., Baeza, J., Comas, J., . . . Rodriguez-Roda, I. R. (2002). A hybrid supervisory system to support WWTP operation: implementation and validation. Water Science and Technology, 45(4-5), 289-297. doi:10.2166/wst.2002.0608
  • Ponte, B.; de la Fuente, D.; Pino, R. & Rosillo, R. (2015): “Real-Time Water Demand Forecasting System through an Agent-Based Architecture”, International Journal of Bio-Inspired Computation, vol. 7, no 3, (147-156).
  • Pouladi, P., Afshar, A., Afshar, M. H., Molajou, A., & Farahmand, H. (2019). Agent-based socio-hydrological modeling for restoration of Urmia Lake: Application of theory of planned behavior. Journal of Hydrology, 576, 736-748. doi:10.1016/j.jhydrol.2019.06.080
  • Ramsey, E. (2016). Use of a Household Survey in the Development of an Agent-Based Model to Support Water Demand Management in Jaipur, India. In World Environmental and Water Resources Congress 2016 (pp. 171-176).
  • Rixon, A., Moglia, M., & Burn, S. (2007). Chapter 4 - Exploring water conservation behaviour through participatory agent-based modelling. In A. Castelletti & R. S. Sessa (Eds.), Topics on System Analysis and Integrated Water Resources Management (pp. 73-96). Oxford: Elsevier.
  • Rojas, R., Castilla-Rho, J., Bennison, G., Bridgart, R., Prats, C., & Claro, E. (2022). Participatory and Integrated Modelling under Contentious Water Use in Semiarid Basins. Hydrology, 9(3). doi:10.3390/hydrology9030049
  • Saqalli, M., Thiriot, S., & Amblard, F. (2010). Investigating social conflicts linked to water resources trhough agent-based modelling. NATO Science for Peace and security series, 75, 142-157. Retrieved from https://halshs.archives-ouvertes.fr/halshs-00918476
  • Schlüter, M., & Pahl-Wostl, C. (2007). Mechanisms of Resilience in Common-pool Resource Management Systems an Agent-based Model of Water Use in a River Basin. Ecology and Society, 12(2). Retrieved from http://www.jstor.org/stable/26267867
  • Schroeder, O. B., Manez, M., & Jeffrey, P. (2009). The use of multi-agent based models to support water resources management The Moroccan case study. Abingdon: Routledge.
  • Schwarz, N., & Ernst, A. (2009). Agent-based modeling of the diffusion of environmental innovations — An empirical approach. Technological Forecasting and Social Change, 76(4), 497-511. doi:10.1016/j.techfore.2008.03.024
  • Shafiee, M. E., & Berglund, E. Z. (2016). Agent-based modeling and evolutionary computation for disseminating public advisories about hazardous material emergencies. Computers, Environment and Urban Systems, 57, 12-25. doi:10.1016/j.compenvurbsys.2016.01.001
  • Smajgl, A., Heckbert, S., Ward, J., & Straton, A. (2009). Simulating impacts of water trading in an institutional perspective. Environmental Modelling & Software, 24(2), 191-201. doi:10.1016/j.envsoft.2008.07.005
  • Strickling, H., DiCarlo, M. F., Shafiee, M. E., & Berglund, E. (2020). Simulation of containment and wireless emergency alerts within targeted pressure zones for water contamination management. Sustainable Cities and Society, 52. doi:10.1016/j.scs.2019.101820
  • Tamburino, L., Di Baldassarre, G., & Vico, G. (2020). Water management for irrigation, crop yield and social attitudes: a socio-agricultural agent-based model to explore a collective action problem. Hydrological Sciences Journal, 65(11), 1815-1829. doi:10.1080/02626667.2020.1769103
  • Tillman, D. E., Larsen, T. A., Pahl-Wostl, C., & Gujer, W. (2005). Simulating development strategies for water supply systems. Journal of Hydroinformatics, 7(1), 41-51. doi:10.2166/hydro.2005.0005
  • Thompson, J. R., Frezza, D., Necioglu, B., Cohen, M. L., Hoffman, K., & Rosfjord, K. (2019). Interdependent Critical Infrastructure Model (ICIM): An agent-based model of power and water infrastructure. International Journal of Critical Infrastructure Protection, 24, 144-165. doi:10.1016/j.ijcip.2018.12.002
  • Tomičić, I., & Schatten, M. (2016). Agent-based framework for modeling and simulation of resources in self-sustainable human settlements: a case study on water management in an eco-village community in Croatia. International Journal of Sustainable Development & World Ecology, 23(6), 504-513. doi:10.1080/13504509.2016.1153527
  • Van Oel, P. R., & Van der Veen, A. (2011). Using agent-based modeling to depict basin closure in the Naivasha basin, Kenya: a framework of analysis. Procedia Environmental Sciences, 7, 32-37. doi:10.1016/j.proenv.2011.07.007
  • Wang, H., Zhang, J., & Zeng, W. (2018). Intelligent simulation of aquatic environment economic policy coupled ABM and SD models. Sci Total Environ, 618, 1160-1172. doi:10.1016/j.scitotenv.2017.09.184
  • Wang, Y., Zhou, Y., Franz, K., Zhang, X., Ding, K. J., Jia, G., & Yuan, X. (2021). An agent-based framework for high-resolution modeling of domestic water use. Resources, Conservation and Recycling, 169. doi:10.1016/j.resconrec.2021.105520
  • Watson, R., Wilson, H. N., Smart, P., & Macdonald, E. K. (2018). Harnessing Difference: A Capability-Based Framework for Stakeholder Engagement in Environmental Innovation. Journal of Product Innovation Management, 35(2), 254-279. doi:https://doi.org/10.1111/jpim.12394
  • Wise, S., & Crooks, A. T. (2012). Agent-based modeling for community resource management: Acequia-based agriculture. Computers, Environment and Urban Systems, 36(6), 562-572. doi:10.1016/j.compenvurbsys.2012.08.004
  • Wu, H., Bolte, J. P., Hulse, D., & Johnson, B. R. (2015). A scenario-based approach to integrating flow-ecology research with watershed development planning. Landscape and Urban Planning, 144, 74-89. doi:10.1016/j.landurbplan.2015.08.012
  • Xiao, Y., Fang, L., & Hipel, K. (2018). Centralized and Decentralized Approaches to Water Demand Management. Sustainability, 10(10). doi:10.3390/su10103466
  • Yang, J., Yang, Y. C. E., Chang, J., Zhang, J., & Yao, J. (2019). Impact of dam development and climate change on hydroecological conditions and natural hazard risk in the Mekong River Basin. Journal of Hydrology, 579. doi:10.1016/j.jhydrol.2019.124177
  • Yang, Y. C. E., Son, K., Hung, F., & Tidwell, V. (2020). Impact of climate change on adaptive management decisions in the face of water scarcity. Journal of Hydrology, 588. doi:10.1016/j.jhydrol.2020.125015
  • Yuan, S., Li, X., & Du, E. (2021). Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies. Agricultural Water Management, 247. doi:10.1016/j.agwat.2020.106693
  • Yuan, X.-C., Wei, Y.-M., Pan, S.-Y., & Jin, J.-L. (2014). Urban Household Water Demand in Beijing by 2020: An Agent-Based Model. Water Resources Management, 28(10), 2967-2980. doi:10.1007/s11269-014-0649-4
  • Zamenian, H., & Abraham, D. M. (2020). An Agent-Based Simulation Model for Assessment of Water Consumption Patterns during Water Rate Increase Events. In Construction Research Congress 2020 (pp. 800-808).
  • Zhang, P., Peeta, S., & Friesz, T. (2005). Dynamic Game Theoretic Model of Multi-Layer Infrastructure Networks. Networks and Spatial Economics, 5(2), 147-178. doi:10.1007/s11067-005-2627-0
  • Zhang, Y., Wu, Y., Yu, H., Dong, Z., & Zhang, B. (2013). Trade-offs in designing water pollution trading policy with multiple objectives: A case study in the Tai Lake Basin, China. Environmental Science & Policy, 33, 295-307. doi:10.1016/j.envsci.2013.07.002
  • Zhao, J., Cai, X., & Wang, Z. (2013). Comparing administered and market-based water allocation systems through a consistent agent-based modeling framework. J Environ Manage, 123, 120-130. doi:10.1016/j.jenvman.2013.03.005
  • Zolfagharipoor, M. A., & Ahmadi, A. (2021). Agent-based modeling of participants’ behaviors in an inter-sectoral groundwater market. J Environ Manage, 299, 113560. doi:10.1016/j.jenvman.2021.113560
Toplam 126 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm TÜRKİYE SU BİLİMLERİ VE YÖNETİMİ DERGİSİ
Yazarlar

Kamil Aybuğa 0000-0003-0523-807X

Aysel Gamze Yücel Işıldar 0000-0001-8528-1806

Yayımlanma Tarihi 25 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 2

Kaynak Göster

APA Aybuğa, K., & Yücel Işıldar, A. G. (2022). Agent-Based Approach on Water Resources Management: A Modified Systematic Review. Turkish Journal of Water Science and Management, 6(2), 202-236. https://doi.org/10.31807/tjwsm.1123808

TJWSM expects all stakeholders to bear the following ethical responsibilities within the scope of publication ethics.

The following ethical duties and responsibilities have been prepared as open access, taking into account guidelines and policies published by the Committee on Publication Ethics (COPE).

Ethical Responsibilities of Authors

· Copyright fee cannot be claimed for the articles submitted to the journal or published in the journal.

· Author’s submissions are expected to be original.

· The references used in text and utilized should be written in the end-text references completely and suitable for basic rules of APA.

· Those who wish to withdraw their submitted paper for publication due to delays or other reasons should apply with a letter.

· The author (s) may be asked for raw data on their manuscripts within the framework of the evaluation process, in which case the author (s) should be prepared to submit the expected data and information to the editorial board and the scientific board.

· The author (s) have an obligation to cooperate with the editor to inform, correct or withdraw the journal editor or publisher if he / she discovers any errors or errors in the published, early appearance or evaluation phase.

· After starting the evaluation process of article, it is not possible to change the author responsibilities (such as adding an author, reordering of author names, removing the author).

· Authors should be provided with explanatory and informative notification and return to the editors.

· The authors should not contradict the ethics of scientific research and publication.

Ethical Responsibilities of Editors

TJWSM editors and field editors should have the following ethical duties and responsibilities on the basis of COPE Code of Conduct and Best Practice Guidelines for Journal Editors and COPE Best Practice Guidelines for Journal Editors published by the Committee on Publication Ethics (COPE) as open access.

General Duties and Responsibilities

Editors are responsible for every publication in TJWSM. In this respect, editors have the following roles and obligations:

· Making efforts to meet the information needs of readers and writers,

· Ensuring the continuous development of the journal,

· Conducting processes to improve the quality of the studies published in the journal,

· Supporting freedom of thought,

· Ensuring academic integrity,

· Continuing processes without compromising intellectual rights and ethical standards,

· Demonstrate clarity and transparency in terms of publication in matters requiring correction, clarification.

Relations with the Readers

Editors should make decisions based on the knowledge, skills and expectations of all readers, researchers and practitioners that they need. In addition, the editors are obliged to take into account of feedback from readers, researchers and practitioners and provide explanatory and informative feedback. They should pay attention to the fact that the published works should provide readers, researchers, practitioners for scientific contributions and be original..

Relations with Authors

• Editors should make positive or negative decisions based on the importance of the work, original value, validity, clarity of expression and the aims and objectives of the journal.

• The studies that are in compliance with the publication scope should be taken to the pre-evaluation stage unless there is a serious problem.

• Editors should not ignore the favorable referee recommendations unless there is a serious problem with the work.

• New editors should not change the decisions made by the previous editor (s) for the work, unless there is a serious problem.

• "Blind Judging and Evaluation Process" must be published and editors should avoid deviations from the defined processes.

• Editors should publish an Author's Guide, updated periodically, which provide details of every topic to be expected by the authors.

Relations with Referees

• Editors should select referees according to the subject of the study.

• Editors oblige to provide the information and guides that referee’s need during the evaluation phase.

• Editors must observe whether there is a conflict of interest between authors and referees.

• The referees' identity information must be kept confidential.

• Encourage referees to consider working in an unbiased, scientific and objective.

• Evaluate referees with criteria such as timely return and performance.

• Develop policies and practices to improve the performance of referees.

• Take the necessary steps to dynamically update the referee pool.

• Prevent disrespectful and unscientific assessments.

Relations with Editorial Board

Editors should ensure that all editorial board members implement the processes according to editorial policies and guidelines and also should inform the members about the publication policies and developments. The editors must train new ones and provide the information they need.

In addition, editors;

• Ensure that the editorial board members evaluate the work impartially and independently.

• To select new editorial board members who are merit.

• Send manuscripts for review based on the subject of expertise of the editorial board members.

• Interact regularly with the editorial board.

• Organize meetings with the editorial board periodically for the development of publishing policies and journals.

Editorial and Blind Arbitration Processes

The Journal’s "Blind Arbitration and Evaluation Process" policies in the publication policies. In this context, the editors ensure that the fair, impartial and timely evaluation of each work is completed. Editors are obliged to comply with the policies of "Blind Review and Review Process" stated in the journal's publication policies. Therefore, the editors ensure that each manuscript is reviewed in an unbiased, fair and timely manner.

Quality assurance

Editors are responsible for the publication of each article in accordance with journals’ publishing policies and international standards.

Protection of personal data

Editors are responsible for protecting the individual data of the authors, referees and readers.

Ethics committee, human and animal rights

Editors are to ensure the protection of human and animal rights in the studies evaluated. Ethics committee should be responsible for rejection of the studies that have no permission for experimental research.

Measures against possible abuse and misconduct

Editors are obliged to take measures against possible abuse and misconduct. In addition to conducting a rigorous and objective investigation for the identification and evaluation of complaints, the editors are also responsible for sharing the findings.

Ensuring the integrity of academic publications

Editors should ensure that errors, inconsistencies or misleading in the work are quickly corrected.

Protection of intellectual property rights

Editors are to protect the intellectual property rights of all published articles and to defend the rights of journal and author (s) in case of possible violations.

Creativity and openness to discussion

Editors should take into account the persuasive criticisms of the works published in the journal and take a constructive attitude towards these criticisms.

They should give chance to the author (s) to respond to the review comments. They should not ignore or exclude studies having negative results.

Complaints

Editors are obliged to examine the complaints coming from the authors, referees or readers carefully and to respond explanatory manner.

Political and commercial concerns

The owner, publisher and any other political and commercial elements must not affect the editors’ independent decision-making.

Conflicts of interest

Editors should ensures that the manuscripts are completed in an independent and impartial manner. They should take into account conflicts of interest among the author (s), the referees and other editors.

Responsibilities of Referees

TJWSM’ assessment process is carried out with the principle of double-blinded refereeing. Meanwhile the referees cannot contact the authors directly. Reviews and comments are communicated through the journal management system. In this process, referee comments on evaluation forms and full texts are forwarded to the author (s) via the editor. In this context, the referees evaluating work for TJWSM are expected to have the following ethical responsibilities:

• Articles submitted to the journal are subject to at least two referees

• If one of the two referees gives a negative opinion, the manuscript is directed to a third referee or the editor to make the final decision.

• Assessments should be impartial.

• Referees must be experts in the article’s subject matter.

• Referees should not be in conflict of interest with research, authors and / or research funders.

• Checked articles should be kept confidential.

• They should dispose of the studies after reviewing with respect to the principle of confidentiality. They can only use the final versions of the studies they have reviewed after they are published.

• Evaluation should be objective in relation to the content of the study. Nationality, gender, religious beliefs, political beliefs and commercial concerns should not be allowed to influence assessment.

• Referees should evaluate article in a constructive and polite language. Do not make humiliating personal comments that include hostility, slander and insult.

• In case of any abuse of the author (s) (eg plagiarism or similar unethical activities), they should immediately inform the editor.

• Referees must adhere to and apply the ethical rules to which the author of the article is assessed.

• Referees should carry out the work they accept to evaluate in a timely manner

Editorial Board Members Ethical Responsibilities

The Editorial Board Members should be aware of the following ethical responsibilities:

• Editors does not demand any fee from the authors.

• Editors are responsible for all processes of the work sent to TJWSM. Thus editors who make decisions regardless of economic or political gains.

• Editors make independent decision.

• TJWSM protects copyright of each published article and keeps records of each published copy.

• TJWSM keeps the database accessible over the internet.

• Has the responsibility to take all kinds of scientific misconduct, citation and plagiarism-related measures for editors.

Actions Contrary to the Ethics of Scientific Research and Publication :

Plagiarism: To present the ideas, methods, data, applications, writings, forms or works of others as part of their own work without referring to the scientific rules.

Fraud: Producing data that is not based on research, editing or modifying the submitted or published work based on unrealistic data, reporting or publishing them, portray

Distortion: To falsify research records and obtained data, to show the methods devices and materials not used in the research as if they are used, not to evaluate data that are not supporting the research hypothesis, to play with data and / or results in order to fit relevant theories or assumptions in line with the interests of the persons and organizations supported, to falsify or shape research results.

Republishing: To present more than one work containing the same results of a research as if they are separate works for using in academic promotions.

Slicing: To present the results of a research as separate works in the evaluation of associate professorship examinations and academic promotions by disrupting the integrity of the research, disaggregating it inappropriately and making numerous publications without referring to each other.

Unfair authorship: To include people who do not have active contributions to the authors, not to include those who have active contributions to the authors, to change the order of the author in an unjustified and inappropriate manner, to remove the names of those who have active contributions during publication or in subsequent editions, and to use their names even though they do not have active contributions.

Other types of ethical violations: Not to specify the publication of the research conducted by the people, institutions or organizations that support the research and their contributions to the research, to disobey ethical rules of human and animal research, not to respect for patient rights in publications, referees share field information with others before publication, to use the resources, spaces, facilities and equipment provided or reserved for scientific research without purpose, and to accuse completely unjustified, unwarranted and deliberate violation of ethics (YÖK Scientific Research and Publication Ethics Directive, Article 8).

If you encounter an unethical situation

If you notice significant errors or inaccuracies in an article published in TJWSM, or if you encounter any ethical conduct or content other than those mentioned above, please email waterjournal@tarimorman.gov.tr . Complaints will provide an opportunity for us to improve, so we welcome complaints and aim to return quickly and constructively