Recession Curve Analysis is a common method to characterize karstic aquifers and their discharge dynamics. Although this technique provides crucial information on quantifying system hydrodynamic properties, the manually selected recession curves analysis is neither a practical technique to cover all candidate recession curves, nor it allows extracting the entire hydrological diversity of the recession behavior. This study aimed to comparatively evaluate the applicability of automated recession selection procedures to the late-time recession analysis of karst spring hydrograph. For the comparative evaluation of the three automated recession extraction methods (Vogel Method, Brutsaert Method, and Aksoy and Wittenberg Method), we quantified the late-time recession parameters of spring hydrographs by combining three extraction methods with four recession analysis methods (Maillet, 1905; Boussinesq, 1904; Coutagne, 1948; and Wittenberg, 1999). By applying our experimental design into the five karst springs located in Austria, we identified the possible weaknesses of the automated recession extraction procedures for the late-time recession analysis for spring hydrographs. To explore the value of the karst spring’s physicochemical data (electrical conductivity and water temperature) as a completion data for the recession curve analysis, we carried out the hydro-chemograph analysis to examine the recession time and its duration. The research provides a research direction as to how the automated recession extraction procedures for the karst spring hydrographs could be improved by the physicochemical signatures of karst springs.
This research was carried out in the Chair of Hydrological Modelling and Water Resources in Albert-Ludwigs-Universität Freiburg (Freiburg, Germany) during my four-month MSc internship under the supervision of Prof. Dr. Andreas Hartmann in 2019. The research was also a small part of my MSc study in hydrological modeling area in Wageningen University & Research (Wageningen, the Netherlands). Some part of this research was presented in European Geoscience Union (EGU) EGU General Assembly 2019. https://meetingorganizer.copernicus.org/EGU2019/EGU2019-8722-2.pdf
Kaynakça
Aksoy, H., & Wittenberg, H. (2011). Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrological Sciences Journal–Journal Des Sciences Hydrologiques 56(2), 226-237. https://doi.org/10.1080/02626667.2011.553614
Amit, H., Lyakhovsky, V., Katz, A., Starinsky, A., & Burg, A. (2002). Interpretation of spring recession curves. Groundwater, 40(5), 543-551. https://doi.org/10.1111/j.1745- 6584.2002.tb02539.x
Arciniega-Esparza, S., Breña-Naranjo, J. A., Pedrozo-Acuña, A., & Appendini, C. M. (2017). HYDRORECESSION: A Matlab toolbox for streamflow recession analysis. Computers & Geosciences, 98, 87-92. http://doi.org/10.1016/j.cageo.2016.10.005
Atkinson, T. (1977). Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). Journal of Hydrology 35(1-2), 93-110. http://doi.org/10.1016/0022- 1694(77)90079-8
Birk, S., & Hergarten, S. (2010). Early recession behaviour of spring hydrographs. Journal of Hydrology, 387, 1-2, 24-32. http://doi.org/10.1016/j.jhydrol.2010.03.026
Biswal, B., & Marani, M. (2010). Geomorphological origin of recession curves. Geophysical Research Letters, 37(24), 1-5. http://doi.org/10.1029/2010GL045415
Bonacci, O. (1993). Karst springs hydrographs as indicators of karst aquifers. Hydrological Sciences Journal, 38(1), 51-62. http://doi.org/10.1080/02626669309492639
Boussinesq, J. (1904). Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources. Journal de Mathématiques Pures et Appliquées, 10, 5-78.
Brutsaert, W. (2008). Long‐ term groundwater storage trends estimated from streamflow records: Climatic perspective. Water Resources Research, 44(2), 1-7. https://doi.org/10.1029/2007WR006518
Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13(3), 637-643. http://doi.org/10.1029/WR013i003p00637
Calli, K. O., & Hartmann, A. (2019). Applicability of recession extraction approaches and recession analysis methods procedures to karstic springs. In Geophysical Research Abstracts (Vol. 21). https://doi.org/10.13140/RG.2.2.10597.76001
Çelik, M., & Çallı, S. S. (2021). Conduit and fracture flow characteristics of Pinarbaşi estavelle, Central Taurus Region, Seydişehir, Turkey. Acta Carsologica, 50(1), 97-118. https://doi.org/10.3986/ac.vi.6997
Chapman, T. (1999). A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13(5), 701-714. https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2
Chen, B., & Krajewski, W. (2016). Analysing individual recession events: sensitivity of parameter determination to the calculation procedure. Hydrological Sciences Journal 61(16), 2887-2901. http://doi.org/10.1080/02626667.2016.1170940
Chen, B., & Krajewski, W. F. (2015). Recession analysis across scales: The impact of both random and nonrandom spatial variability on aggregated hydrologic response. Journal of Hydrology, 523, 97-106. https://doi.org/10.1016/j.jhydrol.2015.01.049
Clark, M. P., Rupp, D. E., Woods, R. A., Tromp-van Meerveld, H. J., Peters, N. E., & Freer, J. E. (2009). Consistency between hydrological models and field observations: linking processes at the hillslope scale to hydrological responses at the watershed scale. Hydrological Processes: An International Journal, 23(2), 311-319. http://doi.org/10.1002/hyp.7154
Coutagne, A. (1948). Météorologie Et Hydrologie-Etude générale des débits et des facteurs qui les conditionnent. La Houille Blanche, 34(3), 228-245. https://doi.org/10.1051/lhb/1948035
Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, Ph., & Al-Malki, A. (2003). Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hardrock aquifer. Journal of Hydrology, 274(1-4), 248-269. http://doi.org/10.1016/S0022- 1694(02)00418-3
Estrela, T., & Sahuquillo, A. (1997). Modeling the response of a karstic spring at Arteta aquifer in Spain. Groundwater, 35(1), 18-24. http://doi.org/10.1111/j.1745-6584.1997.tb00055.x
Fiorillo, F., & Guadagno, F. M. (2010). Karst spring discharges analysis in relation to drought periods, using the SPI. Water Resources Management, 24(9), 1867-1884. https://doi.org/10.1007/s11269-009-9528-9
Fiorillo, F. (2014). The recession of spring hydrographs, focused on karst aquifers. Water Resources Management, 28(7), 1781-1805. https://doi.org/10.1007/s11269-014-0597-z
Fiorotto, V., & Caroni, E. (2013). A new approach to master recession curve analysis. Hydrological Sciences Journal, 58(5), 966-975. http://doi.org/10.1080/02626667.2013.788248
Ford, D., & Williams, P. (2013). Karst hydrogeology and geomorphology. John Wiley & Sons, Ltd.
Forkasiewicz, J., & Paloc, H. (1967). Le regime de tarissement de la Foux de la Vis. Chronique d’hydrogeologie, 10, 59-73.
Fu, T., Chen, H., & Wang, K. (2016). Structure and water storage capacity of a small karst aquifer based on stream discharge in southwest China. Journal of Hydrology, 534, 50-62. http://doi.org/10.1016/j.jhydrol.2015.12.042
Harman, C. J., Sivapalan, M., & Kumar, P. (2009). Power law catchment-scale recessions arising from heterogeneous linear small-scale dynamics. Water Resources Research, 45, 1-13. https://doi.org/doi:10.1029/2008WR007392
Jachens, E. R., Rupp, D. E., Roques, C., & Selker, J. S. (2019). Recession analysis 42 years later– work yet to be done. Hydrology and Earth System Sciences Discussions, 1-16. http://doi.org/10.5194/hess-2019-205
Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall‐ runoff modeling, and doing hydrology backward. Water Resources Research, 45(2). https://doi.org/10.1029/2008WR006912
Kovács, A., Perrochet, P., Király, L., & Jeannin, P. Y. (2005). A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis. Journal of Hydrology, 303(1-4), 152-164. http://doi:10.1016/j.jhydrol.2004.08.023
Kovács, A., & Perrochet, P. (2008). A quantitative approach to spring hydrograph decomposition. Journal of Hydrology, 352(1-2), 16-29. http://dx.doi.org/10.1016/j.jhydrol.2007.12.009
Maillet, E. T. (1905). Essais d'hydraulique souterraine & fluviale. A. Hermann Press.
Nathan, R. J., & McMahon, T. A. (1990). Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26(7), 1465-1473. https://doi.org/10.1029/WR026i007p01465
Padilla, A., & Pulido-Bosch, A. (1995). Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. Journal of Hydrology, 168(1-4), 73-89. http://doi.org/10.1016/0022-1694(94)02648-U
Rimmer, A., & Hartmann, A. (2012). Simplified conceptual structures and analytical solutions for groundwater discharge using reservoir equations. Water Resources Management and Modeling 2: 217-238. https://doi.org/10.5772/34803
Rupp, D. E., & Selker, J. S. (2005). Drainage of a horizontal Boussinesq aquifer with a power law hydraulic conductivity profile. Water Resources Research, 41(11), 1-8. https://doi.org/10.1029/2005WR004241
Sánchez-Murillo, R., Brooks, E. S., Elliot, W. J., Gazel, E., & Boll, J. (2015). Baseflow recession analysis in the inland Pacific Northwest of the United States. Hydrogeology Journal, 23(2), 287- 303. http://doi.org/10.1007/s10040-014-1191-4
Shaw, S. B., & Riha, S. J. (2012). Examining individual recession events instead of a data cloud: Using a modified interpretation of dQ/dt–Q streamflow recession in glaciated watersheds to better inform models of low flow. Journal of Hydrology, 434, 46-54. http://doi.org/10.1016/j.jhydrol.2012.02.034
Stevanović, Z. (Ed.). (2015). Karst aquifers-characterization and engineering. Springer.
Stewart, M. (2015). Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand. Hydrology and Earth System Sciences, 19(6), 2587. http://doi.org/10.5194/hess-19-2587-2015
Stoelzle, M., Stahl, K., & Weiler, M. (2013). Are streamflow recession characteristics really characteristic? Hydrology and Earth System Sciences, 17(2), 817-828. http://doi:10.5194/hess- 17-817-2013
Tallaksen, L.M., (1995). A review of Baseflow Recession Analysis. Journal of Hydrology, 165(1- 4), 349-370. http://doi.org/10.1016/0022-1694(94)02540-R
Tague, C., & Grant, G. E. (2004). A geological framework for interpreting the low‐ flow regimes of Cascade streams, Willamette River Basin, Oregon. Water Resources Research, 40(4). https://doi.org/10.1029/2003WR002629
Vogel, R. M., & Kroll, C. N. (1992). Regional geohydrologic‐ geomorphic relationships for the estimation of low‐ flow statistics. Water Resources Research, 28(9), 2451-2458. http://doi.org/10.1029/92WR01007
Yuce, G. (2007). Yenişehir ve Cüdeyde (Reyhanlı–Hatay) Karst Kaynaklarının Boşalım Hidrodinamiği ve Hidrojeokimyasal Özellikleri. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 20(2), 159-188.
Wittenberg, H. (1999). Baseflow recession and recharge as nonlinear storage processes. Hydrological Processes, 13(5), 715-726. http://doi.org/10.1080/02626667.2011.553614
Xu, B., Ye, M., Dong, S., Dai, Z., & Pei, Y. (2018). A new model for simulating spring discharge recession and estimating effective porosity of karst aquifers. Journal of Hydrology, 562, 609-622. https://doi.org/10.1016/j.jhydrol.2018.05.039
Karstik kaynak hidrograflarında kaynak boşalım karakteristiklerinin otomatik çekilme eğrisi seçim prosedürleri ile belirlenmesinin karşılaştırılmalı olarak değerlendirilmesi
Kaynak hidrograflarında çekilme eğrisi analizi, karstik akifer sistemlerinin akım ve boşalım dinamiklerini karakterize etmek için kullanılan yaygın bir yöntemdir. Bu yöntem, akifer sisteminin hidrodinamik özelliklerinin tanımlanmasında önemli bilgiler sağlamasına karşın, aday bir çekilme eğrisi(leri)nin manuel olarak seçimi ne tüm çekilme eğrilerinin analizini kapsayacak şekilde pratik bir tekniktir, ne de hidrolojik bir değişiminin karstik kaynak çekilme davranışı üzerindeki etkisinin tanımlanmasına izin vermektedir. Bu çalışmada, otomatik çekilme eğrisi seçim prosedürlerinin kaynak hidrografı geç-dönem çekilme analizlerinde uygulanabilirliği araştırılmıştır. Bu kapsamda, Vogel Metodu, Brutsaert Metodu ve Aksoy ve Wittenberg Metodu olmak üzere üç otomatik çekilme eğrisi seçim prosedürü dört adet çekilme eğrisi analizi metodu (Maillet, 1905, Boussinesq, 1904, Coutagne, 1948 ve Wittenberg, 1999) ile birleştirilerek karstik kaynaklarda geç-dönem kaynak çekilme (boşalım) katsayıları karşılaştırmalı olarak hesaplanmıştır. Çalışmada, Avusturya'da bulunan beş karstik kaynağın çekilme katsayıları belirlenmiş olup, karstik kaynak fizikokimyasal verileri (elektriksel iletkenlik ve su sıcaklığı) hidro-kemograflar aracılıyla ile değerlendirilerek otomatik çekilme eğrisi seçim prosedürlerinin olası zayıf yönleri ortaya konmuştur. Bu araştırma, karstik kaynaklarda geç-dönem çekilme eğrisi analizlerinde çekilme başlangıcını ve süresini tamamlamak için otomatik çekilme eğrisi seçim prosedürlerinin uygulanabilirliği için bir araştırma yönü sağlamıştır.
Aksoy, H., & Wittenberg, H. (2011). Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrological Sciences Journal–Journal Des Sciences Hydrologiques 56(2), 226-237. https://doi.org/10.1080/02626667.2011.553614
Amit, H., Lyakhovsky, V., Katz, A., Starinsky, A., & Burg, A. (2002). Interpretation of spring recession curves. Groundwater, 40(5), 543-551. https://doi.org/10.1111/j.1745- 6584.2002.tb02539.x
Arciniega-Esparza, S., Breña-Naranjo, J. A., Pedrozo-Acuña, A., & Appendini, C. M. (2017). HYDRORECESSION: A Matlab toolbox for streamflow recession analysis. Computers & Geosciences, 98, 87-92. http://doi.org/10.1016/j.cageo.2016.10.005
Atkinson, T. (1977). Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). Journal of Hydrology 35(1-2), 93-110. http://doi.org/10.1016/0022- 1694(77)90079-8
Birk, S., & Hergarten, S. (2010). Early recession behaviour of spring hydrographs. Journal of Hydrology, 387, 1-2, 24-32. http://doi.org/10.1016/j.jhydrol.2010.03.026
Biswal, B., & Marani, M. (2010). Geomorphological origin of recession curves. Geophysical Research Letters, 37(24), 1-5. http://doi.org/10.1029/2010GL045415
Bonacci, O. (1993). Karst springs hydrographs as indicators of karst aquifers. Hydrological Sciences Journal, 38(1), 51-62. http://doi.org/10.1080/02626669309492639
Boussinesq, J. (1904). Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources. Journal de Mathématiques Pures et Appliquées, 10, 5-78.
Brutsaert, W. (2008). Long‐ term groundwater storage trends estimated from streamflow records: Climatic perspective. Water Resources Research, 44(2), 1-7. https://doi.org/10.1029/2007WR006518
Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13(3), 637-643. http://doi.org/10.1029/WR013i003p00637
Calli, K. O., & Hartmann, A. (2019). Applicability of recession extraction approaches and recession analysis methods procedures to karstic springs. In Geophysical Research Abstracts (Vol. 21). https://doi.org/10.13140/RG.2.2.10597.76001
Çelik, M., & Çallı, S. S. (2021). Conduit and fracture flow characteristics of Pinarbaşi estavelle, Central Taurus Region, Seydişehir, Turkey. Acta Carsologica, 50(1), 97-118. https://doi.org/10.3986/ac.vi.6997
Chapman, T. (1999). A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13(5), 701-714. https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2
Chen, B., & Krajewski, W. (2016). Analysing individual recession events: sensitivity of parameter determination to the calculation procedure. Hydrological Sciences Journal 61(16), 2887-2901. http://doi.org/10.1080/02626667.2016.1170940
Chen, B., & Krajewski, W. F. (2015). Recession analysis across scales: The impact of both random and nonrandom spatial variability on aggregated hydrologic response. Journal of Hydrology, 523, 97-106. https://doi.org/10.1016/j.jhydrol.2015.01.049
Clark, M. P., Rupp, D. E., Woods, R. A., Tromp-van Meerveld, H. J., Peters, N. E., & Freer, J. E. (2009). Consistency between hydrological models and field observations: linking processes at the hillslope scale to hydrological responses at the watershed scale. Hydrological Processes: An International Journal, 23(2), 311-319. http://doi.org/10.1002/hyp.7154
Coutagne, A. (1948). Météorologie Et Hydrologie-Etude générale des débits et des facteurs qui les conditionnent. La Houille Blanche, 34(3), 228-245. https://doi.org/10.1051/lhb/1948035
Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, Ph., & Al-Malki, A. (2003). Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hardrock aquifer. Journal of Hydrology, 274(1-4), 248-269. http://doi.org/10.1016/S0022- 1694(02)00418-3
Estrela, T., & Sahuquillo, A. (1997). Modeling the response of a karstic spring at Arteta aquifer in Spain. Groundwater, 35(1), 18-24. http://doi.org/10.1111/j.1745-6584.1997.tb00055.x
Fiorillo, F., & Guadagno, F. M. (2010). Karst spring discharges analysis in relation to drought periods, using the SPI. Water Resources Management, 24(9), 1867-1884. https://doi.org/10.1007/s11269-009-9528-9
Fiorillo, F. (2014). The recession of spring hydrographs, focused on karst aquifers. Water Resources Management, 28(7), 1781-1805. https://doi.org/10.1007/s11269-014-0597-z
Fiorotto, V., & Caroni, E. (2013). A new approach to master recession curve analysis. Hydrological Sciences Journal, 58(5), 966-975. http://doi.org/10.1080/02626667.2013.788248
Ford, D., & Williams, P. (2013). Karst hydrogeology and geomorphology. John Wiley & Sons, Ltd.
Forkasiewicz, J., & Paloc, H. (1967). Le regime de tarissement de la Foux de la Vis. Chronique d’hydrogeologie, 10, 59-73.
Fu, T., Chen, H., & Wang, K. (2016). Structure and water storage capacity of a small karst aquifer based on stream discharge in southwest China. Journal of Hydrology, 534, 50-62. http://doi.org/10.1016/j.jhydrol.2015.12.042
Harman, C. J., Sivapalan, M., & Kumar, P. (2009). Power law catchment-scale recessions arising from heterogeneous linear small-scale dynamics. Water Resources Research, 45, 1-13. https://doi.org/doi:10.1029/2008WR007392
Jachens, E. R., Rupp, D. E., Roques, C., & Selker, J. S. (2019). Recession analysis 42 years later– work yet to be done. Hydrology and Earth System Sciences Discussions, 1-16. http://doi.org/10.5194/hess-2019-205
Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall‐ runoff modeling, and doing hydrology backward. Water Resources Research, 45(2). https://doi.org/10.1029/2008WR006912
Kovács, A., Perrochet, P., Király, L., & Jeannin, P. Y. (2005). A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis. Journal of Hydrology, 303(1-4), 152-164. http://doi:10.1016/j.jhydrol.2004.08.023
Kovács, A., & Perrochet, P. (2008). A quantitative approach to spring hydrograph decomposition. Journal of Hydrology, 352(1-2), 16-29. http://dx.doi.org/10.1016/j.jhydrol.2007.12.009
Maillet, E. T. (1905). Essais d'hydraulique souterraine & fluviale. A. Hermann Press.
Nathan, R. J., & McMahon, T. A. (1990). Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26(7), 1465-1473. https://doi.org/10.1029/WR026i007p01465
Padilla, A., & Pulido-Bosch, A. (1995). Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. Journal of Hydrology, 168(1-4), 73-89. http://doi.org/10.1016/0022-1694(94)02648-U
Rimmer, A., & Hartmann, A. (2012). Simplified conceptual structures and analytical solutions for groundwater discharge using reservoir equations. Water Resources Management and Modeling 2: 217-238. https://doi.org/10.5772/34803
Rupp, D. E., & Selker, J. S. (2005). Drainage of a horizontal Boussinesq aquifer with a power law hydraulic conductivity profile. Water Resources Research, 41(11), 1-8. https://doi.org/10.1029/2005WR004241
Sánchez-Murillo, R., Brooks, E. S., Elliot, W. J., Gazel, E., & Boll, J. (2015). Baseflow recession analysis in the inland Pacific Northwest of the United States. Hydrogeology Journal, 23(2), 287- 303. http://doi.org/10.1007/s10040-014-1191-4
Shaw, S. B., & Riha, S. J. (2012). Examining individual recession events instead of a data cloud: Using a modified interpretation of dQ/dt–Q streamflow recession in glaciated watersheds to better inform models of low flow. Journal of Hydrology, 434, 46-54. http://doi.org/10.1016/j.jhydrol.2012.02.034
Stevanović, Z. (Ed.). (2015). Karst aquifers-characterization and engineering. Springer.
Stewart, M. (2015). Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand. Hydrology and Earth System Sciences, 19(6), 2587. http://doi.org/10.5194/hess-19-2587-2015
Stoelzle, M., Stahl, K., & Weiler, M. (2013). Are streamflow recession characteristics really characteristic? Hydrology and Earth System Sciences, 17(2), 817-828. http://doi:10.5194/hess- 17-817-2013
Tallaksen, L.M., (1995). A review of Baseflow Recession Analysis. Journal of Hydrology, 165(1- 4), 349-370. http://doi.org/10.1016/0022-1694(94)02540-R
Tague, C., & Grant, G. E. (2004). A geological framework for interpreting the low‐ flow regimes of Cascade streams, Willamette River Basin, Oregon. Water Resources Research, 40(4). https://doi.org/10.1029/2003WR002629
Vogel, R. M., & Kroll, C. N. (1992). Regional geohydrologic‐ geomorphic relationships for the estimation of low‐ flow statistics. Water Resources Research, 28(9), 2451-2458. http://doi.org/10.1029/92WR01007
Yuce, G. (2007). Yenişehir ve Cüdeyde (Reyhanlı–Hatay) Karst Kaynaklarının Boşalım Hidrodinamiği ve Hidrojeokimyasal Özellikleri. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 20(2), 159-188.
Wittenberg, H. (1999). Baseflow recession and recharge as nonlinear storage processes. Hydrological Processes, 13(5), 715-726. http://doi.org/10.1080/02626667.2011.553614
Xu, B., Ye, M., Dong, S., Dai, Z., & Pei, Y. (2018). A new model for simulating spring discharge recession and estimating effective porosity of karst aquifers. Journal of Hydrology, 562, 609-622. https://doi.org/10.1016/j.jhydrol.2018.05.039
Özdemir Çallı, K., & Hartmann, A. (2022). A Comparative Evaluation of Automated Recession Extraction Procedures for Karst Spring Hydrographs. Turkish Journal of Water Science and Management, 6(1), 2-30. https://doi.org/10.31807/tjwsm.930269