Araştırma Makalesi
BibTex RIS Kaynak Göster

Fractional Order Repetitive Controller Based Current Control of Grid Interactive Voltage Source Inverter in Renewable Energy Systems

Yıl 2023, Cilt: 2 Sayı: 2, 92 - 103, 14.11.2023

Öz

Many renewable energy sources are connected to the grid with the installation of new electrical power systems. Due to power electronic devices in these systems, significant increase in the harmonic content affects the power values of these systems. Therefore, it is essential to develop efficient control strategies of grid-connected power electronics-based new energy sources, which pose a system operating risk and cause a reduction in energy quality. In this study, a fractional delay repetitive controller was investigated in parallel with proportioanal-integral (PI) controller. A fractional delay has been added to the controller to increase suppression of inverter output current harmonics in case the grid frequency and voltage are exposed to disturbances due to renewable energy power systems. The operating principle and stability of the combined controller were analyzed and parameter design was performed on the basis of a three-phase L type filter and a grid-connected inverter. It has been observed that ability of the controller to suppress current harmonics and dynamic control response are quite good in case of disturbed grid frequency and voltage. In this case, current harmonics have been reduced from 60% to below 5% according to IEEE519 standards. Effective dynamic control responses of grid- interacted inverter, simulated in MATLAB/Simulink environment, under harmonic distortion are comparatively presented in this study.

Kaynakça

  • H. Chen, Q. Zhao, H. Zhang, K. Liu, G. Zhan and B. Wang, “Improved Dual-mode repetitive control for grid connected inverters,” in Proceedings of the 2022 International Conference on Advanced Mechatronic Systems, Toyama, Japan, December, 2022, pp. 17-20.
  • IEEE Standard for Harmonic Control in Electric Power Systems, IEEE Std. 519-2022, 2022.
  • L. Shuai, S. Lizhi, L. Xingya, A. Quntao, “Current harmonics suppression strategies of permanent magnet synchronous motor,” Transactions of China Electrotechnical Society, vol. 34, pp. 87-96, 2019.
  • P. Alemi, C. Bae and D. Lee, “Resonance suppression based on PR control for Single-Phase Grid-Connected inverters with LLCL filters”. IEEE J. Emerg. Sel. Topics Power Electron, vol. 4 no. 2, pp. 459-467, 2016.
  • W. Li, X. Ruan, D. Pan, and X. Wang, “Full-feedforward schemes of grid voltages for a three-phase LCL-type grid-connected inverter,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2237–2250, Jun. 2013.
  • Z. Lin, X. Ruan, L. Wu, H. Zhang, and W. Li, “Multi resonant component-based grid-voltage-weighted feedforward scheme for gridconnected inverter to suppress the injected grid current harmonics under weak grid,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9784–9793, Sep. 2020.
  • Y. Yang, K. Zhou, H. Wang, and F. Blaabjerg, “Analysis and mitigation of dead-time harmonics in the single-phase full-bridge PWM converter with repetitive controllers,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 5343–5354, Apr. 2018.
  • K. Zhang, Y. Kang, J. Xiong, and J. Chen, “Direct repetitive control of SPWM inverter for UPS purpose,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 784–792, May 2003.
  • L. Zheng, F. Jiang, J. Song, Y. Gao, and M. Tian, “A discrete-time repetitive sliding mode control for voltage source inverters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 3, pp. 1553–1566, Sep. 2018.
  • L. Zheng, F. Jiang, J. Song, Y. Gao, and M. Tian, “A discrete-time repetitive sliding mode control for voltage source inverters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 3, pp. 1553–1566, Sep. 2018.
  • Z. Liu, B. Zhang, and K. Zhou, “Universal fractional-order design of linear phase lead compensation multirate repetitive control for PWM inverters,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7132–7140, Sep. 2017.
  • M. Zhu, Y. Ye, Y. Xiong, and Q. Zhao, “Multibandwidth repetitive control resisting frequency variation in grid-tied inverters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 10, no. 1, pp. 446–454, Feb. 2022.
  • Q. Zhao, S. Chen, S. Wen, B. Qu, and Y. Ye, “A frequency adaptivePIMR-type repetitive control for a grid-tied inverter,” IEEE Access,vol. 6, pp. 65 418–65 428, Oct. 2018.
  • Y. Yang, K. Zhou, and F. Blaabjerg, “Enhancing the frequency adaptability of periodic current controllers with a fixed sampling rate for grid-connected power converters,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7273–7285, Oct. 2016.
  • M. Liserre, T. Sauter and J.Y. Hung, “Future Energy Systems: integrating renewable energy systems into the smart power grid through industrial electronics”, IEEE Industrial Electronics Magazine, March 2010.
  • M. Karabacak, F. Kılıç, B. Saraçoğlu, A. Boz and A. Ferikoğlu “Şebeke Bağlantılı Eviriciler için LLCL Filtre Tasarımı; Detaylı Bir Performans Analizi”, Politeknik Dergisi vol. 19 no. 3, pp. 251-260, 2016.
  • K. H. Ahmed, S. J. Finney and B. W. Williams, "Passive Filter Design for Three-Phase Inverter Interfacing in Distributed Generation," 2007 Compatibility in Power Electronics, Gdansk, Poland, 2007.
  • A. Garcia-Cerrada, O. Pinzon-Ardila, V. Feliu-Batlle, P. Roncero- Sanchez, and P. Garcia-Gonzalez, “Application of a repetitive controller for a three-phase active power filter,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 237–246, Jan. 2007.
  • W. Meng, S. Q. Xie, Q. Liu, C. Z. Lu, and Q. Ai, “Robust iterative feedback tuning control of a compliant rehabilitation robot for repetitive ankle training,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 173–184, Feb. 2017.
  • H. Liao, M. J. Roelle, J. Chen, S. Park, and J. C. Gerdes, “Implementation and analysis of a repetitive controller for an electro-hydraulic engine valve system,” IEEE Trans. Control Syst. Technol., vol. 19, no. 5, pp. 1102–1113, Sep. 2011.
  • G. Pandove and M. Singh, “Robust repetitive control design for a threephase four wire shunt active power filter,” IEEE Trans. Ind. Inform., vol. 15, no. 5, pp. 2810–2818, May 2019.
  • S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control system: A new type servo system for periodic exogenous signals,” IEEE Trans. Autom. Control, vol. 33, no. 7, pp. 659–668, Jul. 1988.
  • Chandra Bajracharya, Marta Molinas, Member IEEE, Jon Are Suul, Tore M Undeland Understanding of Tuning Techniques of Converter Controllers for VSC-HVDC, Nordic Workshop on Power and Industrial Electronics, June 9-11, 2008, pp.1-8.
  • M. A. Herran, J. R. Fischer, S. A. González, M. G. Judewicz, I. Carugati, and D. O. Carrica, “Repetitive control with adaptive sampling frequency for wind power generation systems,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 1, pp. 58–69, Mar. 2014.
  • R. Teodorescu, M. Liserre and P. Rodrígues, “Grid Converters for Photovoltaic and Wind Power Systems”, John Wiley & Sons, Ltd, West Sussex, 2011.

Yenilenebilir Enerji Sistemlerinde Şebeke Etkileşimli Gerilim Kaynaklı Eviricilerin Kesir Dereceli Tekrarlamalı Kontrolcü Tabanlı Akım Kontrolü

Yıl 2023, Cilt: 2 Sayı: 2, 92 - 103, 14.11.2023

Öz

Çok sayıda yenilenebilir enerji kaynağı, yeni elektrik güç sistemlerinin kurulması ile beraber şebekeye bağlı çalışmaktadır. Bu sistemlerdeki güç elektroniği cihazları sebebi ile harmonik içeriğin önemli ölçüde artması güç değerlerini etkiler. Bu nedenle, sistem işletme riski oluşturan ve enerji kalitesinin azalmasına neden olan şebekeye bağlı güç elektroniği tabanlı yeni enerji kaynaklarının verimli kontrol stratejilerinin geliştirilmesi elzemdir. Bu çalışmada, oran-integral (PI) kontrolcüye paralel olarak kesirli gecikmeli tekrarlayıcı kontrolcü araştırılmıştır. Yenilenebilir enerji güç sistemleri kaynaklı olarak şebeke frekansı ve geriliminin bozucu etkilere maruz kalması durumunda evirici çıkış akımı harmoniklerini bastırma özelliğini artırmak için kontrolcüye kesirli değerli gecikme eklenmiştir. Birleşik kontrolcünün çalışma ilkesi ile kararlılığı analiz edilmiş ve parametre tasarımı üç fazlı L tipi filtre ile şebekeye bağlı evirici temelinde gerçekleştirilmiştir. Kontrolcünün, şebeke frekansının ve geriliminin bozulması durumunda akım harmoniklerini bastırma yeteneğinin ve dinamik kontrol cevabının oldukça iyi olduğu gözlenmiştir. Bu durumda akım harmonikleri %25 seviyelerinden IEEE519 standartlarına göre %5’in altına düşürülmüştür. Bu çalışmada, MATLAB/Simulink ortamında benzeşimi gerçekleştirilen şebeke etkileşimli eviricinin harmonik bozulma altında etkili dinamik kontrol cevapları karşılaştırmalı ortaya konulmuştur.

Teşekkür

Balıkesir Üniversitesi Yenilenebilir Enerji Araştırma Geliştirme ve Uygulama Merkezi imkânlarının kullanılmasından dolayı Balıkesir Üniversitesi Rektörlüğü’ne teşekkür ederim.

Kaynakça

  • H. Chen, Q. Zhao, H. Zhang, K. Liu, G. Zhan and B. Wang, “Improved Dual-mode repetitive control for grid connected inverters,” in Proceedings of the 2022 International Conference on Advanced Mechatronic Systems, Toyama, Japan, December, 2022, pp. 17-20.
  • IEEE Standard for Harmonic Control in Electric Power Systems, IEEE Std. 519-2022, 2022.
  • L. Shuai, S. Lizhi, L. Xingya, A. Quntao, “Current harmonics suppression strategies of permanent magnet synchronous motor,” Transactions of China Electrotechnical Society, vol. 34, pp. 87-96, 2019.
  • P. Alemi, C. Bae and D. Lee, “Resonance suppression based on PR control for Single-Phase Grid-Connected inverters with LLCL filters”. IEEE J. Emerg. Sel. Topics Power Electron, vol. 4 no. 2, pp. 459-467, 2016.
  • W. Li, X. Ruan, D. Pan, and X. Wang, “Full-feedforward schemes of grid voltages for a three-phase LCL-type grid-connected inverter,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2237–2250, Jun. 2013.
  • Z. Lin, X. Ruan, L. Wu, H. Zhang, and W. Li, “Multi resonant component-based grid-voltage-weighted feedforward scheme for gridconnected inverter to suppress the injected grid current harmonics under weak grid,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9784–9793, Sep. 2020.
  • Y. Yang, K. Zhou, H. Wang, and F. Blaabjerg, “Analysis and mitigation of dead-time harmonics in the single-phase full-bridge PWM converter with repetitive controllers,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 5343–5354, Apr. 2018.
  • K. Zhang, Y. Kang, J. Xiong, and J. Chen, “Direct repetitive control of SPWM inverter for UPS purpose,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 784–792, May 2003.
  • L. Zheng, F. Jiang, J. Song, Y. Gao, and M. Tian, “A discrete-time repetitive sliding mode control for voltage source inverters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 3, pp. 1553–1566, Sep. 2018.
  • L. Zheng, F. Jiang, J. Song, Y. Gao, and M. Tian, “A discrete-time repetitive sliding mode control for voltage source inverters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 3, pp. 1553–1566, Sep. 2018.
  • Z. Liu, B. Zhang, and K. Zhou, “Universal fractional-order design of linear phase lead compensation multirate repetitive control for PWM inverters,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7132–7140, Sep. 2017.
  • M. Zhu, Y. Ye, Y. Xiong, and Q. Zhao, “Multibandwidth repetitive control resisting frequency variation in grid-tied inverters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 10, no. 1, pp. 446–454, Feb. 2022.
  • Q. Zhao, S. Chen, S. Wen, B. Qu, and Y. Ye, “A frequency adaptivePIMR-type repetitive control for a grid-tied inverter,” IEEE Access,vol. 6, pp. 65 418–65 428, Oct. 2018.
  • Y. Yang, K. Zhou, and F. Blaabjerg, “Enhancing the frequency adaptability of periodic current controllers with a fixed sampling rate for grid-connected power converters,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7273–7285, Oct. 2016.
  • M. Liserre, T. Sauter and J.Y. Hung, “Future Energy Systems: integrating renewable energy systems into the smart power grid through industrial electronics”, IEEE Industrial Electronics Magazine, March 2010.
  • M. Karabacak, F. Kılıç, B. Saraçoğlu, A. Boz and A. Ferikoğlu “Şebeke Bağlantılı Eviriciler için LLCL Filtre Tasarımı; Detaylı Bir Performans Analizi”, Politeknik Dergisi vol. 19 no. 3, pp. 251-260, 2016.
  • K. H. Ahmed, S. J. Finney and B. W. Williams, "Passive Filter Design for Three-Phase Inverter Interfacing in Distributed Generation," 2007 Compatibility in Power Electronics, Gdansk, Poland, 2007.
  • A. Garcia-Cerrada, O. Pinzon-Ardila, V. Feliu-Batlle, P. Roncero- Sanchez, and P. Garcia-Gonzalez, “Application of a repetitive controller for a three-phase active power filter,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 237–246, Jan. 2007.
  • W. Meng, S. Q. Xie, Q. Liu, C. Z. Lu, and Q. Ai, “Robust iterative feedback tuning control of a compliant rehabilitation robot for repetitive ankle training,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 173–184, Feb. 2017.
  • H. Liao, M. J. Roelle, J. Chen, S. Park, and J. C. Gerdes, “Implementation and analysis of a repetitive controller for an electro-hydraulic engine valve system,” IEEE Trans. Control Syst. Technol., vol. 19, no. 5, pp. 1102–1113, Sep. 2011.
  • G. Pandove and M. Singh, “Robust repetitive control design for a threephase four wire shunt active power filter,” IEEE Trans. Ind. Inform., vol. 15, no. 5, pp. 2810–2818, May 2019.
  • S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control system: A new type servo system for periodic exogenous signals,” IEEE Trans. Autom. Control, vol. 33, no. 7, pp. 659–668, Jul. 1988.
  • Chandra Bajracharya, Marta Molinas, Member IEEE, Jon Are Suul, Tore M Undeland Understanding of Tuning Techniques of Converter Controllers for VSC-HVDC, Nordic Workshop on Power and Industrial Electronics, June 9-11, 2008, pp.1-8.
  • M. A. Herran, J. R. Fischer, S. A. González, M. G. Judewicz, I. Carugati, and D. O. Carrica, “Repetitive control with adaptive sampling frequency for wind power generation systems,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 1, pp. 58–69, Mar. 2014.
  • R. Teodorescu, M. Liserre and P. Rodrígues, “Grid Converters for Photovoltaic and Wind Power Systems”, John Wiley & Sons, Ltd, West Sussex, 2011.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Fuat Kılıç 0000-0003-2502-3789

Yayımlanma Tarihi 14 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 2 Sayı: 2

Kaynak Göster

APA Kılıç, F. (2023). Yenilenebilir Enerji Sistemlerinde Şebeke Etkileşimli Gerilim Kaynaklı Eviricilerin Kesir Dereceli Tekrarlamalı Kontrolcü Tabanlı Akım Kontrolü. Türk Mühendislik Araştırma Ve Eğitimi Dergisi, 2(2), 92-103.
AMA Kılıç F. Yenilenebilir Enerji Sistemlerinde Şebeke Etkileşimli Gerilim Kaynaklı Eviricilerin Kesir Dereceli Tekrarlamalı Kontrolcü Tabanlı Akım Kontrolü. TMAED. Kasım 2023;2(2):92-103.
Chicago Kılıç, Fuat. “Yenilenebilir Enerji Sistemlerinde Şebeke Etkileşimli Gerilim Kaynaklı Eviricilerin Kesir Dereceli Tekrarlamalı Kontrolcü Tabanlı Akım Kontrolü”. Türk Mühendislik Araştırma Ve Eğitimi Dergisi 2, sy. 2 (Kasım 2023): 92-103.
EndNote Kılıç F (01 Kasım 2023) Yenilenebilir Enerji Sistemlerinde Şebeke Etkileşimli Gerilim Kaynaklı Eviricilerin Kesir Dereceli Tekrarlamalı Kontrolcü Tabanlı Akım Kontrolü. Türk Mühendislik Araştırma ve Eğitimi Dergisi 2 2 92–103.
IEEE F. Kılıç, “Yenilenebilir Enerji Sistemlerinde Şebeke Etkileşimli Gerilim Kaynaklı Eviricilerin Kesir Dereceli Tekrarlamalı Kontrolcü Tabanlı Akım Kontrolü”, TMAED, c. 2, sy. 2, ss. 92–103, 2023.
ISNAD Kılıç, Fuat. “Yenilenebilir Enerji Sistemlerinde Şebeke Etkileşimli Gerilim Kaynaklı Eviricilerin Kesir Dereceli Tekrarlamalı Kontrolcü Tabanlı Akım Kontrolü”. Türk Mühendislik Araştırma ve Eğitimi Dergisi 2/2 (Kasım 2023), 92-103.
JAMA Kılıç F. Yenilenebilir Enerji Sistemlerinde Şebeke Etkileşimli Gerilim Kaynaklı Eviricilerin Kesir Dereceli Tekrarlamalı Kontrolcü Tabanlı Akım Kontrolü. TMAED. 2023;2:92–103.
MLA Kılıç, Fuat. “Yenilenebilir Enerji Sistemlerinde Şebeke Etkileşimli Gerilim Kaynaklı Eviricilerin Kesir Dereceli Tekrarlamalı Kontrolcü Tabanlı Akım Kontrolü”. Türk Mühendislik Araştırma Ve Eğitimi Dergisi, c. 2, sy. 2, 2023, ss. 92-103.
Vancouver Kılıç F. Yenilenebilir Enerji Sistemlerinde Şebeke Etkileşimli Gerilim Kaynaklı Eviricilerin Kesir Dereceli Tekrarlamalı Kontrolcü Tabanlı Akım Kontrolü. TMAED. 2023;2(2):92-103.