Derleme
BibTex RIS Kaynak Göster

Sodyum-iyon Bataryaların Yapısı ve Elektrokimyasal Mekanizmaları

Yıl 2024, Cilt: 3 Sayı: 1, 58 - 71, 28.05.2024

Öz

Sürdürülebilir ve yenilenebilir enerji depolama sistemleri içerisinde son zamanlarda üzerinde oldukça fazla çalışılan diğer bir alan ise elektrokimyasal enerji depolama sistemleridir (pil ve kapasitör gibi). Talep edilen enerjiyi sağlayabilmek ve güvenirliği en üst düzeye çıkarmak için farklı enerji depolama sistemlerine ihtiyaç duyulmaktadır. Kullanım amaçlarına göre farklı enerji depolama sistemleri mevcuttur. Elektrokimyasal enerji depolama sistemlerinin başında Sodyum (Na) - iyon ve lityum (Li) - iyon bataryalar gelmektedir ve iki grubunda çalışma mekanizmaları birbirine oldukça benzemektedir. Li-iyon bataryalar günümüzde birçok uygulama sisteminde kullanımı yaygın olduğu halde Na-iyon bataryalarında (SIB) benzer açıdan ticarileştirilmesi ve geliştirilmesi amaçlanmaktadır. Bu nedenle, bu çalışmada SIB'lere ilişkin genel bir anlayış sağlamak amacıyla SIB'lerin katot, anot, elektrolitlerine ilişkin genel olarak yapıları ve elektrokimyasal mekanizmaları incelenmektedir.

Kaynakça

  • R. Shakoor, et al., "A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries," J. Mater. Chem., vol. 22, no. 38, pp. 20535-20541, Aug. 2012.
  • S. W. Kim, D. H. Seo, X. Ma, G. Ceder, K. Kang, "Electrode materials for rechargeable sodium‐ion batteries: potential alternatives to current lithium‐ion batteries," Advanced Energy Materials, vol. 2, no.7, pp. 710-721, May 2012.
  • N. Yabuuchi, et al., "P2-type Na x [Fe1/2Mn1/2] O2 made from earth-abundant elements for rechargeable Na batteries,” Nature materials, vol. 11, no.6, pp. 512-517, Apr. 2012.
  • K. T. Lee, et al., "Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries,” Chemistry of Materials, vol. 23, no.16, pp. 3593-3600, Jul. 2011.
  • S. Wenzel, T. Hara, J. Janek, P. Adelhelm, "Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies,” Energy & Environmental Science, vol. 4, no. 9, pp. 3342-3345, Jun. 2011.
  • M. D. Slater, et al., "Sodium‐ion batteries,” Advanced Functional Materials, vol. 23, no.8, pp. 947-958, Jan. 2013.
  • B. L. Ellis and L. F. Nazar, "Sodium and sodium-ion energy storage batteries," Current Opinion in Solid State and Materials Science, vol. 16, no.4, pp. 168-177, Aug. 2012.
  • C. Liu, Z. G. Neale, G. Cao, "Understanding electrochemical potentials of cathode materials in rechargeable batteries,” Materials Today, vol. 19, no.2, pp. 109-123, Mar. 2016.
  • K. Holmberg, A. Erdemir, "Influence of tribology on global energy consumption, costs and emissions.,” Friction, vol. 5, pp. 263-284, Sep. 2017.
  • X.Arqué, T. Patiño, S. Sánchez, "Correction: Enzyme-powered micro-and nano-motors: key parameters for an application-oriented design,” Chemical Science, vol. 13, no. 33, pp. 9784-9786, Jul. 2022.
  • R. Usiskin, et al., "Fundamentals, status and promise of sodium-based batteries,” Nature Reviews Materials, vol. 6, no.11, pp. 1020-1035, Jun. 2021.
  • A. Tripathi, A. Rudola, S. R. Gajjela, S. Xi, P. Balaya, "Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries,” Journal of Materials Chemistry A, vol. 7, no.45, pp. 25-944-25960, Oct. 2019.
  • C. Delmas, C. Fouassier, P. Hagenmuller, "Structural classification and properties of the layered oxides,” Physica B+ c, vol. 99, no. 4, pp. 81-85, Jan. 1980.
  • M. Sathiya, Q. Jacquet,M.L. Doublet, O.M. Karakulina, J. Hadermann, and J.m. Tarascon, "A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes,” Advanced Energy Materials, vol. 8, no.11, pp. 1702599, Jan. 2018.
  • P. F. Wang, et al., "Na+/vacancy disordering promises high-rate Na-ion batteries,” Science advances, Vol. 4, no.3, pp. 6018, Mar. 2018.
  • C. Delmas, J. J. Braconnier, C. Fouassier and P. Hagenmuller, "Electrochemical intercalation of sodium in NaxCoO2 bronzes,” Solid State Ionics, vol. 3, no. 4, pp. 165-169, Aug. 1981.
  • S. Komaba, C. Takei, T. Nakayama, A. Ogata and N. Yabuuchi, "Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2,” Electrochemistry Communications, vol. 12, no.3, pp. 355-358, Mar. 2010.
  • S. Komaba, et al.,"Electrochemically reversible sodium intercalation of layered NaNi0. 5Mn0. 5O2 and NaCrO2,” Ecs Transactions, vol. 16, no.42, pp.43, Jun. 2009.
  • J. P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier and P.Hagenmuller, "Sur quelques nouvelles phases de formule NaxMnO2 (x⩽ 1),” Journal of Solid State Chemistry, vol. 3, no.1, pp. 1-11. Feb. 1971.
  • L. Mu, et al.,"Prototype sodium‐ion batteries using an air‐stable and Co/Ni‐free O3‐layered metal oxide cathode,” Advanced Materials, vol. 27, no.43, pp. 6928-6933, Oct. 2015.
  • A. Ramesh, A. Tripathi and P. Balaya, "A mini review on cathode materials for sodium‐ion batteries,” International Journal of Applied Ceramic Technology, vol. 19, no. 2, pp. 913- 923, Sep. 2022.
  • S. H. Bo, X. Li, A. J. Toumar and G. Ceder, "Layered-to-rock-salt transformation in desodiated Na x CrO2 (x 0.4),” Chemistry of Materials, vol. 28, no. 5, pp. 1419-1429, Feb. 2016.
  • M. Kalapsazova, et al.,"P3‐Type layered sodium‐deficient nickel–manganese oxides: a flexible structural matrix for reversible sodium and lithiumintercalation,” ChemPlusChem, vol. 80, no. 11, pp. 1642-1656, Jul. 2015.
  • E. J. Kim, et al.,"Oxygen redox activity through a reductive coupling mechanism in the P3-type nickel-doped sodium manganese oxide,” ACS Applied Energy Materials, vol. 3, no.1, pp. 184-191, Dec. 2019.
  • J. Liu, et al., "Elucidation of the high-voltage phase in the layered sodium ion battery cathode material P3–Na 0.5 Ni 0.25 Mn 0.75 O2,” Journal of Materials Chemistry A, vol. 8, no. 40, pp. 21151-21162, Sep. 2020.
  • Y. H. Jung, A. S. Christiansen, R. E. Johnsen, P. Norby and D.K. Kim, "In situ X‐ray diffraction studies on structural changes of a p2 layered material during electrochemical desodiation/sodiation,” Advanced Functional Materials, vol. 25 no. 21, pp. 3227-3237, Apr. 2015.
  • X. Bai, et al.,"Anionic redox activity in a newly Zn‐doped sodium layered oxide P2‐Na2/3Mn1− yZnyO2 (0< y< 0.23),” Advanced Energy Materials C, vol. 8, no. 32, pp. 1802379, Oct. 2018.
  • X. Chen, J. Song, J. Li, H. Zhang and H. Tang, "A P2/P3 composite-layered cathode material with low-voltage decay for sodium-ion batteries,” Journal of Applied Electrochemistry, vol. 51, pp. 619-627, Jan. 2021.
  • C. Sun, et al.,"Construction of the Na0. 92Li0. 40Ni0. 73Mn0. 24Co0. 12O2 sodium-ion cathode with balanced high-power/energy-densities,” Energy Storage Materials, vol. 27, no. 1, pp. 252-260, May 2020.
  • H. Wang, A. Tang and K. Huang, "Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics,” Chinese Journal of Chemistry, vol. 29, no. 8, pp. 1583-1588, Aug. 2011.
  • J. Y. Hwang, S. T. Myung and Y. K. Sun, "Sodium-ion batteries: present and future,” Chemical Society Reviews, vol. 46, no. 12, pp. 3529-3614, Mar. 2017.
  • Z. Jian, Y. S. Hu, X. Ji and W. Chen, "Nasicon‐structured materials for energy storage,” Advanced Materials, vol. 29, no. 20, pp. 1601925, Feb. 2017.
  • W. Luo, et al., "Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent,” ACS applied materials & interfaces, vol. 7, no. 4, pp. 2626--2631, Jan. 2015.
  • M. M. Doeff, Y. Ma, S. J. Visco and L. C. De Jonghe, "Electrochemical insertion of sodium into carbon,” Journal of the Electrochemical Society, vol. 140 ,no. 12, pp. L169, Oct. 1993.
  • R. Alcántara, J. J. Mateos and J. Tirado, "Negative electrodes for lithium-and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000 C,” Journal of the Electrochemical Society, vol. 149, no. 2, pp. A20, Jan. 2002.
  • R. Alcántara, G. F. Ortiz, P. Lavela, J. L. Tirado, R. Stoyanova, and E. Zhecheva, "EPR, NMR, and electrochemical studies of surface-modified carbon microbeads,” Chemistry of Materials, vol. 18, no. 9, pp. 2293-2301, Mar. 2006.
  • D. Callegari, "New materials for electrochemical energy storage: advanced lithium ion batteries and beyond,” Phd thesis, University of Pavia, Mar. 2021.
  • L. Zeng, W. Li, J. Cheng, J. Wang, X. Liu and Y. Yu, " N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties,” RSC advances, vol. 4, no.33 , pp. 16920-16927, Feb. 2014.
  • M. Dubois, and D. Billaud, "Electrochemical impedance spectroscopic study of the intercalation of lithium and sodium ions into polyparaphenylene in carbonate-based electrolytes,” Electrochimica Acta, vol. 47, no. 28, pp. 4459-4466, Oct. 2002.
  • L. Zhu, A. Lei, Y. Cao, X. Ai and H. Yang, "An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode,” Chemical Communications, vol. 49, no. 6, pp. 567-569, Nov. 2013.
  • N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, "Research development on sodium-ion batteries,” Chemical Reviews, vol. 114, no. 23, pp. 11636-11682, Nov. 2014.
  • D. Kundu, E. Talaie, V. Duffort and L.F. Nazar, "The emerging chemistry of sodium ion batteries for electrochemical energy storage,” Angewandte Chemie International Edition, vol. 54, no.11, 3431-3448, Feb. 2015.
  • R. S. Babu, and M. Pyo, "Hard carbon and carbon nanotube composites for the improvement of low-voltage performance in Na ion batteries,” Journal of the Electrochemical Society, vol. 161, no. 6, pp. A1045, May 2014.
  • X. Zhou and Y. G. Guo, "Highly disordered carbon as a superior anode material for room‐temperature sodium‐ion batteries,” ChemElectroChem, vol. 1, no.1, pp. 83-86, Aug. 2014.
  • Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu and Y. Huang, "Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance,” Elsevier, vol. 55, pp. 328-334, Apr. 2013.
  • K. Tang, et al., "Hollow carbon nanospheres with superior rate capability for sodium‐based batteries,” Advanced Energy Materials, vol. 2, no. 7, pp. 873-877, May 2012.
  • Y. Wen, et al., "Expanded graphite as superior anode for sodium-ion batteries,” Nature communications, vol. 5, no.1, pp. 4033, Jun. 2014.
  • Y. X. Wang, S. L. Chou, H. K. Liu and S. X. Dou, "Reduced graphene oxide with superior cycling stability and rate capability for sodium storage,” Elsevier, vol. 57 , pp. 202-208, Jun. 2013.
  • H. Wang, D. Mitlin, J. Ding, Z. Li, and K. Cui, "Excellent energy–power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes,” Journal of Materials Chemistry A, vol. 4 ,no.14 , pp. 5149-5158, Mar. 2016.
  • H. Kang, et al., "Update on anode materials for Na-ion batteries,” Journal of Materials Chemistry A, vol. 3, no.35, pp. 17899-17913, Jul. 2015.
  • A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, "Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism,” Journal of the American Chemical Society, vol. 134, no.54 , pp. 20805-20811, Nov. 2012.
  • V. L. Chevrier and G. Ceder, "Challenges for Na-ion negative electrodes,” Journal of the Electrochemical Society, vol. 158, no.9 , pp. A1011, Jul. 2011.
  • L. Baggetto, J. K. Keum, J. F. Browning and G. M. Veith, "Germanium as negative electrode material for sodium-ionbatteries,” Electrochemistry Communications, vol. 34, pp. 41-44, Sep. 2013.
  • L. Xiao, et al., "High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications," Chemical Communications, vol. 48, no.27, pp. 3321-3323, Feb. 2012.
  • R. Alcántara, M. Jaraba, P. Lavela and J. Tirado, "NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries,” Chemistry of Materials, vol. 14, no.7, pp. 2847-2848, Jun. 2012.
  • N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao and J. Chen, "3D porous γ‐Fe2O3@ C nanocomposite as high‐performance anode material of Na‐ion batteries,” Advanced Energy Materials, vol. 5, no.5, pp. 1401123, Nov. 2015.
  • Y. Lu, N. Zhang, Q. Zhao, J. Liang, and J. Chen, "Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries,” Nanoscale, vol. 7, no.6, pp. 2770-2776, Dec. 2015.
  • S. H. Choi and Y. C. Kang "Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries,” Nano Research, vol. 8, pp. 1595-1603, Apr. 2015.
  • X. Xie, D. Su, J. Zhang, S. Chen, A.K. Mondal, and G. Wang, "A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO 2/graphene for sodium-ion batteries,” Nanoscale, vol. 7, no.7, 3164-3172, Jan. 2015.
  • N. Li, S. Liao, Y. Sun, H. Song and C. Wang, "Uniformly dispersed self-assembled growth of Sb 2 O 3/Sb@ graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability,” Journal of Materials Chemistry A, vol. 3, no.11, pp. 5820-5828, Feb. 2015.
  • X .Zhou, X. Liu, Y. Xu, Y. Liu, Z. Dai, and J. Bao, "An SbO x/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries,” The Journal of Physical Chemistry C, vol. 118, no.41, pp. 23527-23534, Sep. 2014.
  • G. Y. Chen, et al., "Conversion and displacement reaction types of transition metal compounds for sodium ion battery,” Journal of Power Sources, vol. 284, pp. 115-121, Jun. 2015.
  • H. Pan, et al., "Sodium storage and transport properties in layered Na2Ti3O7 for room‐temperature sodium‐ion batteries,” Advanced Energy Materials, vol. 3, no.9, pp. 1186-1194, May 2013.
  • L. Wu, D. Buchholz, D. Bresser, L. G. Chagas and S. Passerini, "Anatase TiO2 nanoparticles for high power sodium-ion anodes," Journal of Power Sources, vol. 251, pp. 379-385, Apr. 2014.
  • J. Geng, J. P. Bonnet, S. Renault, F. Dolhem and P. Poizot, "Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit,” Energy & Environmental Science, vol. 3, no.12, pp. 1929-1933, Nov. 2010.
  • Y. Park, et al.,"Sodium terephthalate as an organic anode material for sodium ion batteries,” Advanced Materials, vol. 24, no.26, pp. 3562-3567, Jun. 2012.
  • Z. Zhu, H. Li, J. Liang, Z. Tao and J. Chen, "The disodium salt of 2, 5-dihydroxy-1, 4-benzoquinone as anode material for rechargeable sodium ion batteries,” Chemical Communications, vol. 51, no.8, pp. 1446-1448, Dec. 2015.
  • D. J. Kim, et al., "An aqueous sodium ion hybrid battery incorporating an organic compound and a prussian blue derivative,” Advanced Energy Materials, vol. 4, no. 12, pp. 1400133, Apr. 2014.
  • C. Wang, et al.,"Extended π-conjugated system for fast-charge and-discharge sodium-ion batteries,” Journal of the American Chemical Society, vol. 137, no. 8, pp. 3124-3130, Feb. 2015.
  • A. Choi, et al.,"Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries,” Journal of Materials Chemistry A, vol. 2, no.36, pp. 14986-14993, Jul. 2014.
  • S. Wang, et al.,"All organic sodium‐ion batteries with Na4C8H2O6,” Angewandte Chemie International Edition, vol. 53, no. 23, pp. 5892-5896, Feb. 2014.
  • Y. Kim, K. H. Ha, S. M. Oh and K. T. Lee, "High‐capacity anode materials for sodium‐ion batteries,” Chemistry–A European Journal, vol. 20, no.38, pp. 11980-11992, Aug. 2014.
  • H. Zhang, M. Hu, Q. Lv, Z. H. Huang, F. Kang, and R. Lv,"Advanced materials for sodium‐ion capacitors with superior energy–power properties: Progress and perspectives,”Small, vol.16, no.15, pp.1902843, Sep. 2020.

The Structure and Electrochemical Mechanisms of Sodium-ion Batteries

Yıl 2024, Cilt: 3 Sayı: 1, 58 - 71, 28.05.2024

Öz

Another area that has been studied a lot lately in sustainable and renewable energy storage systems is electrochemical energy storage systems (such as batteries and capacitors). Different energy storage systems are needed to provide the requested energy and maximize reliability. Different energy storage systems are available depending on their intended use. Sodium (Na) - ion and lithium (Li) - ion batteries are the leading electrochemical energy storage systems, and the working mechanisms of both groups are quite similar to each other. Although Li-ion batteries are widely used in many application systems today, it is aimed to commercialize and develop Na-ion batteries (SIB) in a similar way. Therefore, in this review study, in order to provide a general understanding of SIBs, the general structures and electrochemical mechanisms of the cathode, anode, and electrolytes of SIBs are emphasized.

Kaynakça

  • R. Shakoor, et al., "A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries," J. Mater. Chem., vol. 22, no. 38, pp. 20535-20541, Aug. 2012.
  • S. W. Kim, D. H. Seo, X. Ma, G. Ceder, K. Kang, "Electrode materials for rechargeable sodium‐ion batteries: potential alternatives to current lithium‐ion batteries," Advanced Energy Materials, vol. 2, no.7, pp. 710-721, May 2012.
  • N. Yabuuchi, et al., "P2-type Na x [Fe1/2Mn1/2] O2 made from earth-abundant elements for rechargeable Na batteries,” Nature materials, vol. 11, no.6, pp. 512-517, Apr. 2012.
  • K. T. Lee, et al., "Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries,” Chemistry of Materials, vol. 23, no.16, pp. 3593-3600, Jul. 2011.
  • S. Wenzel, T. Hara, J. Janek, P. Adelhelm, "Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies,” Energy & Environmental Science, vol. 4, no. 9, pp. 3342-3345, Jun. 2011.
  • M. D. Slater, et al., "Sodium‐ion batteries,” Advanced Functional Materials, vol. 23, no.8, pp. 947-958, Jan. 2013.
  • B. L. Ellis and L. F. Nazar, "Sodium and sodium-ion energy storage batteries," Current Opinion in Solid State and Materials Science, vol. 16, no.4, pp. 168-177, Aug. 2012.
  • C. Liu, Z. G. Neale, G. Cao, "Understanding electrochemical potentials of cathode materials in rechargeable batteries,” Materials Today, vol. 19, no.2, pp. 109-123, Mar. 2016.
  • K. Holmberg, A. Erdemir, "Influence of tribology on global energy consumption, costs and emissions.,” Friction, vol. 5, pp. 263-284, Sep. 2017.
  • X.Arqué, T. Patiño, S. Sánchez, "Correction: Enzyme-powered micro-and nano-motors: key parameters for an application-oriented design,” Chemical Science, vol. 13, no. 33, pp. 9784-9786, Jul. 2022.
  • R. Usiskin, et al., "Fundamentals, status and promise of sodium-based batteries,” Nature Reviews Materials, vol. 6, no.11, pp. 1020-1035, Jun. 2021.
  • A. Tripathi, A. Rudola, S. R. Gajjela, S. Xi, P. Balaya, "Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries,” Journal of Materials Chemistry A, vol. 7, no.45, pp. 25-944-25960, Oct. 2019.
  • C. Delmas, C. Fouassier, P. Hagenmuller, "Structural classification and properties of the layered oxides,” Physica B+ c, vol. 99, no. 4, pp. 81-85, Jan. 1980.
  • M. Sathiya, Q. Jacquet,M.L. Doublet, O.M. Karakulina, J. Hadermann, and J.m. Tarascon, "A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes,” Advanced Energy Materials, vol. 8, no.11, pp. 1702599, Jan. 2018.
  • P. F. Wang, et al., "Na+/vacancy disordering promises high-rate Na-ion batteries,” Science advances, Vol. 4, no.3, pp. 6018, Mar. 2018.
  • C. Delmas, J. J. Braconnier, C. Fouassier and P. Hagenmuller, "Electrochemical intercalation of sodium in NaxCoO2 bronzes,” Solid State Ionics, vol. 3, no. 4, pp. 165-169, Aug. 1981.
  • S. Komaba, C. Takei, T. Nakayama, A. Ogata and N. Yabuuchi, "Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2,” Electrochemistry Communications, vol. 12, no.3, pp. 355-358, Mar. 2010.
  • S. Komaba, et al.,"Electrochemically reversible sodium intercalation of layered NaNi0. 5Mn0. 5O2 and NaCrO2,” Ecs Transactions, vol. 16, no.42, pp.43, Jun. 2009.
  • J. P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier and P.Hagenmuller, "Sur quelques nouvelles phases de formule NaxMnO2 (x⩽ 1),” Journal of Solid State Chemistry, vol. 3, no.1, pp. 1-11. Feb. 1971.
  • L. Mu, et al.,"Prototype sodium‐ion batteries using an air‐stable and Co/Ni‐free O3‐layered metal oxide cathode,” Advanced Materials, vol. 27, no.43, pp. 6928-6933, Oct. 2015.
  • A. Ramesh, A. Tripathi and P. Balaya, "A mini review on cathode materials for sodium‐ion batteries,” International Journal of Applied Ceramic Technology, vol. 19, no. 2, pp. 913- 923, Sep. 2022.
  • S. H. Bo, X. Li, A. J. Toumar and G. Ceder, "Layered-to-rock-salt transformation in desodiated Na x CrO2 (x 0.4),” Chemistry of Materials, vol. 28, no. 5, pp. 1419-1429, Feb. 2016.
  • M. Kalapsazova, et al.,"P3‐Type layered sodium‐deficient nickel–manganese oxides: a flexible structural matrix for reversible sodium and lithiumintercalation,” ChemPlusChem, vol. 80, no. 11, pp. 1642-1656, Jul. 2015.
  • E. J. Kim, et al.,"Oxygen redox activity through a reductive coupling mechanism in the P3-type nickel-doped sodium manganese oxide,” ACS Applied Energy Materials, vol. 3, no.1, pp. 184-191, Dec. 2019.
  • J. Liu, et al., "Elucidation of the high-voltage phase in the layered sodium ion battery cathode material P3–Na 0.5 Ni 0.25 Mn 0.75 O2,” Journal of Materials Chemistry A, vol. 8, no. 40, pp. 21151-21162, Sep. 2020.
  • Y. H. Jung, A. S. Christiansen, R. E. Johnsen, P. Norby and D.K. Kim, "In situ X‐ray diffraction studies on structural changes of a p2 layered material during electrochemical desodiation/sodiation,” Advanced Functional Materials, vol. 25 no. 21, pp. 3227-3237, Apr. 2015.
  • X. Bai, et al.,"Anionic redox activity in a newly Zn‐doped sodium layered oxide P2‐Na2/3Mn1− yZnyO2 (0< y< 0.23),” Advanced Energy Materials C, vol. 8, no. 32, pp. 1802379, Oct. 2018.
  • X. Chen, J. Song, J. Li, H. Zhang and H. Tang, "A P2/P3 composite-layered cathode material with low-voltage decay for sodium-ion batteries,” Journal of Applied Electrochemistry, vol. 51, pp. 619-627, Jan. 2021.
  • C. Sun, et al.,"Construction of the Na0. 92Li0. 40Ni0. 73Mn0. 24Co0. 12O2 sodium-ion cathode with balanced high-power/energy-densities,” Energy Storage Materials, vol. 27, no. 1, pp. 252-260, May 2020.
  • H. Wang, A. Tang and K. Huang, "Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics,” Chinese Journal of Chemistry, vol. 29, no. 8, pp. 1583-1588, Aug. 2011.
  • J. Y. Hwang, S. T. Myung and Y. K. Sun, "Sodium-ion batteries: present and future,” Chemical Society Reviews, vol. 46, no. 12, pp. 3529-3614, Mar. 2017.
  • Z. Jian, Y. S. Hu, X. Ji and W. Chen, "Nasicon‐structured materials for energy storage,” Advanced Materials, vol. 29, no. 20, pp. 1601925, Feb. 2017.
  • W. Luo, et al., "Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent,” ACS applied materials & interfaces, vol. 7, no. 4, pp. 2626--2631, Jan. 2015.
  • M. M. Doeff, Y. Ma, S. J. Visco and L. C. De Jonghe, "Electrochemical insertion of sodium into carbon,” Journal of the Electrochemical Society, vol. 140 ,no. 12, pp. L169, Oct. 1993.
  • R. Alcántara, J. J. Mateos and J. Tirado, "Negative electrodes for lithium-and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000 C,” Journal of the Electrochemical Society, vol. 149, no. 2, pp. A20, Jan. 2002.
  • R. Alcántara, G. F. Ortiz, P. Lavela, J. L. Tirado, R. Stoyanova, and E. Zhecheva, "EPR, NMR, and electrochemical studies of surface-modified carbon microbeads,” Chemistry of Materials, vol. 18, no. 9, pp. 2293-2301, Mar. 2006.
  • D. Callegari, "New materials for electrochemical energy storage: advanced lithium ion batteries and beyond,” Phd thesis, University of Pavia, Mar. 2021.
  • L. Zeng, W. Li, J. Cheng, J. Wang, X. Liu and Y. Yu, " N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties,” RSC advances, vol. 4, no.33 , pp. 16920-16927, Feb. 2014.
  • M. Dubois, and D. Billaud, "Electrochemical impedance spectroscopic study of the intercalation of lithium and sodium ions into polyparaphenylene in carbonate-based electrolytes,” Electrochimica Acta, vol. 47, no. 28, pp. 4459-4466, Oct. 2002.
  • L. Zhu, A. Lei, Y. Cao, X. Ai and H. Yang, "An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode,” Chemical Communications, vol. 49, no. 6, pp. 567-569, Nov. 2013.
  • N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, "Research development on sodium-ion batteries,” Chemical Reviews, vol. 114, no. 23, pp. 11636-11682, Nov. 2014.
  • D. Kundu, E. Talaie, V. Duffort and L.F. Nazar, "The emerging chemistry of sodium ion batteries for electrochemical energy storage,” Angewandte Chemie International Edition, vol. 54, no.11, 3431-3448, Feb. 2015.
  • R. S. Babu, and M. Pyo, "Hard carbon and carbon nanotube composites for the improvement of low-voltage performance in Na ion batteries,” Journal of the Electrochemical Society, vol. 161, no. 6, pp. A1045, May 2014.
  • X. Zhou and Y. G. Guo, "Highly disordered carbon as a superior anode material for room‐temperature sodium‐ion batteries,” ChemElectroChem, vol. 1, no.1, pp. 83-86, Aug. 2014.
  • Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu and Y. Huang, "Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance,” Elsevier, vol. 55, pp. 328-334, Apr. 2013.
  • K. Tang, et al., "Hollow carbon nanospheres with superior rate capability for sodium‐based batteries,” Advanced Energy Materials, vol. 2, no. 7, pp. 873-877, May 2012.
  • Y. Wen, et al., "Expanded graphite as superior anode for sodium-ion batteries,” Nature communications, vol. 5, no.1, pp. 4033, Jun. 2014.
  • Y. X. Wang, S. L. Chou, H. K. Liu and S. X. Dou, "Reduced graphene oxide with superior cycling stability and rate capability for sodium storage,” Elsevier, vol. 57 , pp. 202-208, Jun. 2013.
  • H. Wang, D. Mitlin, J. Ding, Z. Li, and K. Cui, "Excellent energy–power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes,” Journal of Materials Chemistry A, vol. 4 ,no.14 , pp. 5149-5158, Mar. 2016.
  • H. Kang, et al., "Update on anode materials for Na-ion batteries,” Journal of Materials Chemistry A, vol. 3, no.35, pp. 17899-17913, Jul. 2015.
  • A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, "Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism,” Journal of the American Chemical Society, vol. 134, no.54 , pp. 20805-20811, Nov. 2012.
  • V. L. Chevrier and G. Ceder, "Challenges for Na-ion negative electrodes,” Journal of the Electrochemical Society, vol. 158, no.9 , pp. A1011, Jul. 2011.
  • L. Baggetto, J. K. Keum, J. F. Browning and G. M. Veith, "Germanium as negative electrode material for sodium-ionbatteries,” Electrochemistry Communications, vol. 34, pp. 41-44, Sep. 2013.
  • L. Xiao, et al., "High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications," Chemical Communications, vol. 48, no.27, pp. 3321-3323, Feb. 2012.
  • R. Alcántara, M. Jaraba, P. Lavela and J. Tirado, "NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries,” Chemistry of Materials, vol. 14, no.7, pp. 2847-2848, Jun. 2012.
  • N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao and J. Chen, "3D porous γ‐Fe2O3@ C nanocomposite as high‐performance anode material of Na‐ion batteries,” Advanced Energy Materials, vol. 5, no.5, pp. 1401123, Nov. 2015.
  • Y. Lu, N. Zhang, Q. Zhao, J. Liang, and J. Chen, "Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries,” Nanoscale, vol. 7, no.6, pp. 2770-2776, Dec. 2015.
  • S. H. Choi and Y. C. Kang "Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries,” Nano Research, vol. 8, pp. 1595-1603, Apr. 2015.
  • X. Xie, D. Su, J. Zhang, S. Chen, A.K. Mondal, and G. Wang, "A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO 2/graphene for sodium-ion batteries,” Nanoscale, vol. 7, no.7, 3164-3172, Jan. 2015.
  • N. Li, S. Liao, Y. Sun, H. Song and C. Wang, "Uniformly dispersed self-assembled growth of Sb 2 O 3/Sb@ graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability,” Journal of Materials Chemistry A, vol. 3, no.11, pp. 5820-5828, Feb. 2015.
  • X .Zhou, X. Liu, Y. Xu, Y. Liu, Z. Dai, and J. Bao, "An SbO x/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries,” The Journal of Physical Chemistry C, vol. 118, no.41, pp. 23527-23534, Sep. 2014.
  • G. Y. Chen, et al., "Conversion and displacement reaction types of transition metal compounds for sodium ion battery,” Journal of Power Sources, vol. 284, pp. 115-121, Jun. 2015.
  • H. Pan, et al., "Sodium storage and transport properties in layered Na2Ti3O7 for room‐temperature sodium‐ion batteries,” Advanced Energy Materials, vol. 3, no.9, pp. 1186-1194, May 2013.
  • L. Wu, D. Buchholz, D. Bresser, L. G. Chagas and S. Passerini, "Anatase TiO2 nanoparticles for high power sodium-ion anodes," Journal of Power Sources, vol. 251, pp. 379-385, Apr. 2014.
  • J. Geng, J. P. Bonnet, S. Renault, F. Dolhem and P. Poizot, "Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit,” Energy & Environmental Science, vol. 3, no.12, pp. 1929-1933, Nov. 2010.
  • Y. Park, et al.,"Sodium terephthalate as an organic anode material for sodium ion batteries,” Advanced Materials, vol. 24, no.26, pp. 3562-3567, Jun. 2012.
  • Z. Zhu, H. Li, J. Liang, Z. Tao and J. Chen, "The disodium salt of 2, 5-dihydroxy-1, 4-benzoquinone as anode material for rechargeable sodium ion batteries,” Chemical Communications, vol. 51, no.8, pp. 1446-1448, Dec. 2015.
  • D. J. Kim, et al., "An aqueous sodium ion hybrid battery incorporating an organic compound and a prussian blue derivative,” Advanced Energy Materials, vol. 4, no. 12, pp. 1400133, Apr. 2014.
  • C. Wang, et al.,"Extended π-conjugated system for fast-charge and-discharge sodium-ion batteries,” Journal of the American Chemical Society, vol. 137, no. 8, pp. 3124-3130, Feb. 2015.
  • A. Choi, et al.,"Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries,” Journal of Materials Chemistry A, vol. 2, no.36, pp. 14986-14993, Jul. 2014.
  • S. Wang, et al.,"All organic sodium‐ion batteries with Na4C8H2O6,” Angewandte Chemie International Edition, vol. 53, no. 23, pp. 5892-5896, Feb. 2014.
  • Y. Kim, K. H. Ha, S. M. Oh and K. T. Lee, "High‐capacity anode materials for sodium‐ion batteries,” Chemistry–A European Journal, vol. 20, no.38, pp. 11980-11992, Aug. 2014.
  • H. Zhang, M. Hu, Q. Lv, Z. H. Huang, F. Kang, and R. Lv,"Advanced materials for sodium‐ion capacitors with superior energy–power properties: Progress and perspectives,”Small, vol.16, no.15, pp.1902843, Sep. 2020.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji, Elektrokimyasal Enerji Depolama ve Dönüşüm
Bölüm Derlemeler
Yazarlar

Esra Balci 0000-0003-0127-7602

Sebahat Altundağ 0000-0002-4777-8376

Serdar Altın 0000-0002-4590-907X

Yayımlanma Tarihi 28 Mayıs 2024
Gönderilme Tarihi 12 Ekim 2023
Kabul Tarihi 21 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 1

Kaynak Göster

APA Balci, E., Altundağ, S., & Altın, S. (2024). Sodyum-iyon Bataryaların Yapısı ve Elektrokimyasal Mekanizmaları. Türk Mühendislik Araştırma Ve Eğitimi Dergisi, 3(1), 58-71.
AMA Balci E, Altundağ S, Altın S. Sodyum-iyon Bataryaların Yapısı ve Elektrokimyasal Mekanizmaları. TUR MUH ARAS VE EĞİT D. Mayıs 2024;3(1):58-71.
Chicago Balci, Esra, Sebahat Altundağ, ve Serdar Altın. “Sodyum-Iyon Bataryaların Yapısı Ve Elektrokimyasal Mekanizmaları”. Türk Mühendislik Araştırma Ve Eğitimi Dergisi 3, sy. 1 (Mayıs 2024): 58-71.
EndNote Balci E, Altundağ S, Altın S (01 Mayıs 2024) Sodyum-iyon Bataryaların Yapısı ve Elektrokimyasal Mekanizmaları. Türk Mühendislik Araştırma ve Eğitimi Dergisi 3 1 58–71.
IEEE E. Balci, S. Altundağ, ve S. Altın, “Sodyum-iyon Bataryaların Yapısı ve Elektrokimyasal Mekanizmaları”, TUR MUH ARAS VE EĞİT D, c. 3, sy. 1, ss. 58–71, 2024.
ISNAD Balci, Esra vd. “Sodyum-Iyon Bataryaların Yapısı Ve Elektrokimyasal Mekanizmaları”. Türk Mühendislik Araştırma ve Eğitimi Dergisi 3/1 (Mayıs 2024), 58-71.
JAMA Balci E, Altundağ S, Altın S. Sodyum-iyon Bataryaların Yapısı ve Elektrokimyasal Mekanizmaları. TUR MUH ARAS VE EĞİT D. 2024;3:58–71.
MLA Balci, Esra vd. “Sodyum-Iyon Bataryaların Yapısı Ve Elektrokimyasal Mekanizmaları”. Türk Mühendislik Araştırma Ve Eğitimi Dergisi, c. 3, sy. 1, 2024, ss. 58-71.
Vancouver Balci E, Altundağ S, Altın S. Sodyum-iyon Bataryaların Yapısı ve Elektrokimyasal Mekanizmaları. TUR MUH ARAS VE EĞİT D. 2024;3(1):58-71.