Derleme
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 7 Sayı: 2, 106 - 113, 30.06.2020

Öz

Kaynakça

  • 1. Shenkin A. Micronutrients in health and disease. Postgraduate Medical Journal 2006;82:559–67.
  • 2. Manna P, Kalita J. Beneficial role of vitamin K supplementation on insulin sensitivity, glucose metabolism, and the reduced risk of type 2 diabetes: A review. Nutrition 2016;32:732–9.
  • 3. Ghishan FK, Kiela PR. Vitamins and minerals in inflammatory bowel disease. Gastroenterology Clinics of North America 2017;46(4):797–808.
  • 4. Ishihara J, Umesawa M, Okada C et al. Relationship between ve- getables and fruits (Antioxidant vitamins, minerals, and fiber) intake and risk of cardiovascular disease. In: Vasan RS, Sawyer DB, editors. Encyclopedia of Cardiovascular Research and Medicine. Elsevier; 2018.p.253-82.
  • 5. Tie JK, Jin DY, Straight DL et al. Functional study of the vitamin K cycle in mammalian cells. Blood 2011;117(10):2967–74.
  • 6. Dam H. The antihaemorrhagic vitamin of the chick. Biochem J 1935;29(6):1273–85.
  • 7. Li Y, Chen J peng, Duan L et al. Effect of vitamin K2 on type 2 diabetes mellitus: A review. Diabetes Research and Clinical Practice 2018;136:39–51.
  • 8. Beulens JWJ, Booth SL, Van Den Heuvel E et al. The role of me- naquinones (vitamin K 2 ) in human health. Br J Nutr 2013;110(8):1- 12.
  • 9. Shearer MJ, Fu X, Booth SL. Vitamin K Nutrition, metabolism, and requirements: Current concepts and future research. Adv Nutr 2012;3(2):182–95.
  • 10. Booth SL, Centi A, Smith SR et al. The role of osteocalcin in hu- man glucose metabolism: Marker or mediator? Nature Reviews En- docrinology 2013;9(1):43–55.
  • 11. Cranenburg ECM, Schurgers LJ, Vermeer C. Vitamin K: The coagulation vitamin that became omnipotent. Thromb Haemost 2007;98(1):120–5.
  • 12. Knapen MH, Braam LA, Drummen NE et al. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopa- usal women. A double-blind randomised clinical trial. Thromb Hae- most 2015;113(5):1135-44.
  • 13. Rees K, Guraewal S, Wong YL et al. Is vitamin K consumption associated with cardio-metabolic disorders? A systematic review. Maturitas 2010;67(2):121–8.
  • 14. Beulens JWJ, Van Der A DL, Grobbee DE et al. Dietary phylloqui- none and menaquinones intakes and risk of type 2 diabetes. Diabetes Care. 2010;33(8):1699–705.
  • 15. Ibarrola-Jurado N, Salas-Salvadó J, Martínez-González MA et al. Dietary phylloquinone intake and risk of type 2 diabetes in el- derly subjects at high risk of cardiovascular disease. Am J Clin Nutr 2012;96(5):1113–8.
  • 16. Kumar R, Binkley N, Vella A. Effect of phylloquinone supp- lementation on glucose homeostasis in humans. Am J Clin Nutr 2010;92(6):1528–32.
  • 17. Rasekhi H, Karandish M, Jalali MT et al. The effect of vitamin K1 supplementation on sensitivity and insulin resistance via osteocalcin in prediabetic women: A double-blind randomized controlled clini- cal trial. Eur J Clin Nutr 2015;69(8):891–5.
  • 18. Yoshida M, Jacques PF, Meigs JB et al. Effect of vitamin K supple- mentation on insulin resistance in older men and women. Diabetes Care 2008;31(11):2092-6.
  • 19. Ertaş-Öztürk Y, Gezmen-Karada M, Aktürk M et al. Body mass index and insulin resistance in healthy adults: As-sociations with plasma osteocalcin, phylloquinone levels, and dietary vitamin K in- take. Prog Nutr 2020;22(2).
  • 20. Dahlberg S, Larsson D, Rommer A et al. Vitamin K2 (Menaqu- inone-7) supplementation and its effect on glucose tolerance test in healthy volunteers. J Diabetes Metab Manag 2019;1:1-5.
  • 21. Reaven GM. The insulin resistance syndrome: Definition and die- tary approaches to treatment. Annu Rev Nutr 2005;25(1):391–406.
  • 22. Al-Osami MH, Hameed EK. Serum adiponectin level in osteopo- rotic postmenopausal women with type 2 diabetes mellitus. Diabetes Metab Syndr Clin Res Rev 2018;12(6):939–42.
  • 23. Savvidis C, Tournis S, Dede AD. Obesity and bone metabolism. Hormones 2018;17:205–17.
  • 24. Wu J, Xu J, Wang K et al. Associations between circulating adipo- kines and bone mineral density in patients with knee osteoarthritis: A cross-sectional study. BMC Musculoskelet Disord 2018;19:16.
  • 25. Lee M, Lee H, Kim J. Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: A systematic review and meta-analysis. British Journal of Nutrition 2018;120:373–84.
  • 26. Saleem U, Mosley TH, Kullo IJ. Serum osteocalcin is associa- ted with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome. Arterioscler Thromb Vasc Biol 2010;30(7):1474–8.
  • 27. Kanazawa I. Osteocalcin as a hormone regulating glucose meta- bolism. World J Diabetes 2015;6(18):1345-54.
  • 28. Berkner KL. The vitamin K-dependent carboxylase. Annu Rev Nutr 2005;25(1):127–49.
  • 29. Shea MK, Gundberg CM, Meigs JB et al. γ-Carboxylation of os- teocalcin and insulin resistance in older men and women. Am J Clin Nutr 2009;90(5):1230–5.
  • 30. Hwang YC, Jeong IK, Ahn KJ et al. The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhan- ced β-cell function in middle-aged male subjects. Diabetes Metab Res Rev 2009;25(8):768–72.
  • 31. Lee NK, Sowa H, Hinoi E et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007;130(3):456–69.
  • 32. Hussein AG, Mohamed RH, Shalaby SM et al. Vitamin K2 allevia- tes type 2 diabetes in rats by induction of osteocalcin gene expression. Nutrition 2018;47:33–8.
  • 33. Desbois C, Hogue DA, Karsenty G. The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 1994;269(2):1183–90.
  • 34. Sakamoto N, Nishiike T, Iguchi H et al. Relationship between acute insulin response and vitamin K intake in healthy young male volunteers. Diabetes Nutr Metab 1999;12(1):37–41.
  • 35. Yoshida M, Booth SL, Meigs JB et al. Phylloquinone intake, in- sulin sensitivity, and glycemic status in men and women. Am J Clin Nutr 2008;88(1):210–5.
  • 36. Pittas AG, Harris SS, Eliades M et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 2009;94(3):827–32.
  • 37. Pollock NK, Bernard PJ, Gower BA et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with β-cell function. J Clin Endocrinol Metab 2011;96(7):1092–9.
  • 38. Asemi Z, Raygan F, Bahmani F et al. The effects of vitamin D, K and calcium co-supplementation on carotid intima-media thick- ness and metabolic status in overweight type 2 diabetic patients with CHD. Br J Nutr 2016;116(2):286-93.
  • 39. Choi HJ, Yu J, Choi H et al. Vitamin K2 supplementation impro- ves insulin sensitivity via osteocalcin metabolism: A placebo-control- led trial. Diabetes Care 2011;34(9):147.
  • 40. Juanola-Falgarona M, Salas-Salvadó J, Estruch R et al. Association between dietary phylloquinone intake and peripheral metabolic risk markers related to insulin resistance and diabetes in elderly subjects at high cardiovascular risk. Cardiovasc Diabetol 2013;12:7.
  • 41. Varsha MK, Thiagarajan R, Manikandan R et al. Vitamin K1 alle- viates streptozotocin-induced type 1 diabetes by mitigating free radi- cal stress, as well as inhibiting NF-κB activation and iNOS expression in rat pancreas. Nutrition 2015;31(1):214–22.
  • 42. Liang Y, Tan A, Liang D et al. Low osteocalcin level is a risk factor for impaired glucose metabolism in a Chinese male population. J Di- abetes Investig 2016;7(4):522–8.
  • 43. Suksomboon N, Poolsup N, Darli Ko Ko H. Effect of vitamin K supplementation on insulin sensitivity: a meta-analysis. Diabetes Metab Syndr Obes 2017;10:169–77.
  • 44. Ferron M, Hinoi E, Karsenty G et al. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the de- velopment of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 2008;105(13):5266-70.
  • 45. Mizokami A, Yasutake Y, Gao J et al. Osteocalcin Induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS One 2013;8(2).
  • 46. Shea MK, Booth SL, Massaro JM et al. Vitamin K and vitamin D status: Associations with inflammatory markers in the framingham offspring study. Am J Epidemiol 2007;167(3):313–20.
  • 47. Vervoort LMT, Ronden JE, Thijssen HHW. The potent antioxi- dant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem Pharmacol 1997;54(8):871–6.
  • 48. Ohsaki Y, Shirakawa H, Hiwatashi K et al. Vitamin K suppresses lipopolysaccharide-induced inflammation in the rat. Biosci Biotech- nol Biochem 2006;70(4):926–32.
  • 49. Reddi K, Henderson B, Meghji S et al. Interleukin 6 producti- on by lipopolysaccharide-stimulated human fibroblasts is potently inhibited by naphthoquinone (vitamin k) compounds. Cytokine 1995;7(3):287–90.
  • 50. Li J, Lin JC, Wang H et al. Novel role of vitamin K in preven- ting oxidative injury to developing oligodendrocytes and neurons. J Neurosci 2003;23(13):5816-26.
  • 51. del Pino J, Martín-Gómez E, Martín-Rodríguez M et al. Influence of sex, age, and menopause in serum osteocalcin (BGP) levels. Klin Wochenschr 1991;69(24):1135–8.

POSSIBLE BENEFICIAL EFFECTS OF VITAMIN K AND OSTEOCALCIN ON GLUCOSE METABOLISM

Yıl 2020, Cilt: 7 Sayı: 2, 106 - 113, 30.06.2020

Öz

The role of vitamin K, in bone metabolism and its effects on insulin resistance and Type-2 diabetes, have been discussed. The mechanism of vitamin K’s beneficial effect on insulin sensitivity and glucose homeostasis is not yet known. Various biological active molecules such as adiponectin, leptin, and resistin, which is secreted from adipose tissue and have important roles in glu- cose metabolism, have been proposed to regulate bone metabolism. Some studies have suggested that bone metabolism is also effective on adipose tissue and energy metabolism. It is thought that osteocalcin, a vitamin K dependent protein is effective in glucose metabolism. The role of Vitamin K in glucose metabolism is thought to be partly due to the modulation of diabetes-re- lated cytokines and other metabolic risk markers, as inflammation lies at the bottom of chronic metabolic diseases. The aim of this review is to explain the effect of Vitamin K and osteocalcin on glucose metabolism and its possible mechanisms of action.

Kaynakça

  • 1. Shenkin A. Micronutrients in health and disease. Postgraduate Medical Journal 2006;82:559–67.
  • 2. Manna P, Kalita J. Beneficial role of vitamin K supplementation on insulin sensitivity, glucose metabolism, and the reduced risk of type 2 diabetes: A review. Nutrition 2016;32:732–9.
  • 3. Ghishan FK, Kiela PR. Vitamins and minerals in inflammatory bowel disease. Gastroenterology Clinics of North America 2017;46(4):797–808.
  • 4. Ishihara J, Umesawa M, Okada C et al. Relationship between ve- getables and fruits (Antioxidant vitamins, minerals, and fiber) intake and risk of cardiovascular disease. In: Vasan RS, Sawyer DB, editors. Encyclopedia of Cardiovascular Research and Medicine. Elsevier; 2018.p.253-82.
  • 5. Tie JK, Jin DY, Straight DL et al. Functional study of the vitamin K cycle in mammalian cells. Blood 2011;117(10):2967–74.
  • 6. Dam H. The antihaemorrhagic vitamin of the chick. Biochem J 1935;29(6):1273–85.
  • 7. Li Y, Chen J peng, Duan L et al. Effect of vitamin K2 on type 2 diabetes mellitus: A review. Diabetes Research and Clinical Practice 2018;136:39–51.
  • 8. Beulens JWJ, Booth SL, Van Den Heuvel E et al. The role of me- naquinones (vitamin K 2 ) in human health. Br J Nutr 2013;110(8):1- 12.
  • 9. Shearer MJ, Fu X, Booth SL. Vitamin K Nutrition, metabolism, and requirements: Current concepts and future research. Adv Nutr 2012;3(2):182–95.
  • 10. Booth SL, Centi A, Smith SR et al. The role of osteocalcin in hu- man glucose metabolism: Marker or mediator? Nature Reviews En- docrinology 2013;9(1):43–55.
  • 11. Cranenburg ECM, Schurgers LJ, Vermeer C. Vitamin K: The coagulation vitamin that became omnipotent. Thromb Haemost 2007;98(1):120–5.
  • 12. Knapen MH, Braam LA, Drummen NE et al. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopa- usal women. A double-blind randomised clinical trial. Thromb Hae- most 2015;113(5):1135-44.
  • 13. Rees K, Guraewal S, Wong YL et al. Is vitamin K consumption associated with cardio-metabolic disorders? A systematic review. Maturitas 2010;67(2):121–8.
  • 14. Beulens JWJ, Van Der A DL, Grobbee DE et al. Dietary phylloqui- none and menaquinones intakes and risk of type 2 diabetes. Diabetes Care. 2010;33(8):1699–705.
  • 15. Ibarrola-Jurado N, Salas-Salvadó J, Martínez-González MA et al. Dietary phylloquinone intake and risk of type 2 diabetes in el- derly subjects at high risk of cardiovascular disease. Am J Clin Nutr 2012;96(5):1113–8.
  • 16. Kumar R, Binkley N, Vella A. Effect of phylloquinone supp- lementation on glucose homeostasis in humans. Am J Clin Nutr 2010;92(6):1528–32.
  • 17. Rasekhi H, Karandish M, Jalali MT et al. The effect of vitamin K1 supplementation on sensitivity and insulin resistance via osteocalcin in prediabetic women: A double-blind randomized controlled clini- cal trial. Eur J Clin Nutr 2015;69(8):891–5.
  • 18. Yoshida M, Jacques PF, Meigs JB et al. Effect of vitamin K supple- mentation on insulin resistance in older men and women. Diabetes Care 2008;31(11):2092-6.
  • 19. Ertaş-Öztürk Y, Gezmen-Karada M, Aktürk M et al. Body mass index and insulin resistance in healthy adults: As-sociations with plasma osteocalcin, phylloquinone levels, and dietary vitamin K in- take. Prog Nutr 2020;22(2).
  • 20. Dahlberg S, Larsson D, Rommer A et al. Vitamin K2 (Menaqu- inone-7) supplementation and its effect on glucose tolerance test in healthy volunteers. J Diabetes Metab Manag 2019;1:1-5.
  • 21. Reaven GM. The insulin resistance syndrome: Definition and die- tary approaches to treatment. Annu Rev Nutr 2005;25(1):391–406.
  • 22. Al-Osami MH, Hameed EK. Serum adiponectin level in osteopo- rotic postmenopausal women with type 2 diabetes mellitus. Diabetes Metab Syndr Clin Res Rev 2018;12(6):939–42.
  • 23. Savvidis C, Tournis S, Dede AD. Obesity and bone metabolism. Hormones 2018;17:205–17.
  • 24. Wu J, Xu J, Wang K et al. Associations between circulating adipo- kines and bone mineral density in patients with knee osteoarthritis: A cross-sectional study. BMC Musculoskelet Disord 2018;19:16.
  • 25. Lee M, Lee H, Kim J. Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: A systematic review and meta-analysis. British Journal of Nutrition 2018;120:373–84.
  • 26. Saleem U, Mosley TH, Kullo IJ. Serum osteocalcin is associa- ted with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome. Arterioscler Thromb Vasc Biol 2010;30(7):1474–8.
  • 27. Kanazawa I. Osteocalcin as a hormone regulating glucose meta- bolism. World J Diabetes 2015;6(18):1345-54.
  • 28. Berkner KL. The vitamin K-dependent carboxylase. Annu Rev Nutr 2005;25(1):127–49.
  • 29. Shea MK, Gundberg CM, Meigs JB et al. γ-Carboxylation of os- teocalcin and insulin resistance in older men and women. Am J Clin Nutr 2009;90(5):1230–5.
  • 30. Hwang YC, Jeong IK, Ahn KJ et al. The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhan- ced β-cell function in middle-aged male subjects. Diabetes Metab Res Rev 2009;25(8):768–72.
  • 31. Lee NK, Sowa H, Hinoi E et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007;130(3):456–69.
  • 32. Hussein AG, Mohamed RH, Shalaby SM et al. Vitamin K2 allevia- tes type 2 diabetes in rats by induction of osteocalcin gene expression. Nutrition 2018;47:33–8.
  • 33. Desbois C, Hogue DA, Karsenty G. The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 1994;269(2):1183–90.
  • 34. Sakamoto N, Nishiike T, Iguchi H et al. Relationship between acute insulin response and vitamin K intake in healthy young male volunteers. Diabetes Nutr Metab 1999;12(1):37–41.
  • 35. Yoshida M, Booth SL, Meigs JB et al. Phylloquinone intake, in- sulin sensitivity, and glycemic status in men and women. Am J Clin Nutr 2008;88(1):210–5.
  • 36. Pittas AG, Harris SS, Eliades M et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 2009;94(3):827–32.
  • 37. Pollock NK, Bernard PJ, Gower BA et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with β-cell function. J Clin Endocrinol Metab 2011;96(7):1092–9.
  • 38. Asemi Z, Raygan F, Bahmani F et al. The effects of vitamin D, K and calcium co-supplementation on carotid intima-media thick- ness and metabolic status in overweight type 2 diabetic patients with CHD. Br J Nutr 2016;116(2):286-93.
  • 39. Choi HJ, Yu J, Choi H et al. Vitamin K2 supplementation impro- ves insulin sensitivity via osteocalcin metabolism: A placebo-control- led trial. Diabetes Care 2011;34(9):147.
  • 40. Juanola-Falgarona M, Salas-Salvadó J, Estruch R et al. Association between dietary phylloquinone intake and peripheral metabolic risk markers related to insulin resistance and diabetes in elderly subjects at high cardiovascular risk. Cardiovasc Diabetol 2013;12:7.
  • 41. Varsha MK, Thiagarajan R, Manikandan R et al. Vitamin K1 alle- viates streptozotocin-induced type 1 diabetes by mitigating free radi- cal stress, as well as inhibiting NF-κB activation and iNOS expression in rat pancreas. Nutrition 2015;31(1):214–22.
  • 42. Liang Y, Tan A, Liang D et al. Low osteocalcin level is a risk factor for impaired glucose metabolism in a Chinese male population. J Di- abetes Investig 2016;7(4):522–8.
  • 43. Suksomboon N, Poolsup N, Darli Ko Ko H. Effect of vitamin K supplementation on insulin sensitivity: a meta-analysis. Diabetes Metab Syndr Obes 2017;10:169–77.
  • 44. Ferron M, Hinoi E, Karsenty G et al. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the de- velopment of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 2008;105(13):5266-70.
  • 45. Mizokami A, Yasutake Y, Gao J et al. Osteocalcin Induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS One 2013;8(2).
  • 46. Shea MK, Booth SL, Massaro JM et al. Vitamin K and vitamin D status: Associations with inflammatory markers in the framingham offspring study. Am J Epidemiol 2007;167(3):313–20.
  • 47. Vervoort LMT, Ronden JE, Thijssen HHW. The potent antioxi- dant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem Pharmacol 1997;54(8):871–6.
  • 48. Ohsaki Y, Shirakawa H, Hiwatashi K et al. Vitamin K suppresses lipopolysaccharide-induced inflammation in the rat. Biosci Biotech- nol Biochem 2006;70(4):926–32.
  • 49. Reddi K, Henderson B, Meghji S et al. Interleukin 6 producti- on by lipopolysaccharide-stimulated human fibroblasts is potently inhibited by naphthoquinone (vitamin k) compounds. Cytokine 1995;7(3):287–90.
  • 50. Li J, Lin JC, Wang H et al. Novel role of vitamin K in preven- ting oxidative injury to developing oligodendrocytes and neurons. J Neurosci 2003;23(13):5816-26.
  • 51. del Pino J, Martín-Gómez E, Martín-Rodríguez M et al. Influence of sex, age, and menopause in serum osteocalcin (BGP) levels. Klin Wochenschr 1991;69(24):1135–8.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Derleme
Yazarlar

Büşra Başpınar 0000-0003-0584-2568

Nurcan Yabancı Ayhan Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 18 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 2

Kaynak Göster

APA Başpınar, B., & Yabancı Ayhan, N. (2020). POSSIBLE BENEFICIAL EFFECTS OF VITAMIN K AND OSTEOCALCIN ON GLUCOSE METABOLISM. Turkish Medical Student Journal, 7(2), 106-113.
AMA Başpınar B, Yabancı Ayhan N. POSSIBLE BENEFICIAL EFFECTS OF VITAMIN K AND OSTEOCALCIN ON GLUCOSE METABOLISM. TMSJ. Haziran 2020;7(2):106-113.
Chicago Başpınar, Büşra, ve Nurcan Yabancı Ayhan. “POSSIBLE BENEFICIAL EFFECTS OF VITAMIN K AND OSTEOCALCIN ON GLUCOSE METABOLISM”. Turkish Medical Student Journal 7, sy. 2 (Haziran 2020): 106-13.
EndNote Başpınar B, Yabancı Ayhan N (01 Haziran 2020) POSSIBLE BENEFICIAL EFFECTS OF VITAMIN K AND OSTEOCALCIN ON GLUCOSE METABOLISM. Turkish Medical Student Journal 7 2 106–113.
IEEE B. Başpınar ve N. Yabancı Ayhan, “POSSIBLE BENEFICIAL EFFECTS OF VITAMIN K AND OSTEOCALCIN ON GLUCOSE METABOLISM”, TMSJ, c. 7, sy. 2, ss. 106–113, 2020.
ISNAD Başpınar, Büşra - Yabancı Ayhan, Nurcan. “POSSIBLE BENEFICIAL EFFECTS OF VITAMIN K AND OSTEOCALCIN ON GLUCOSE METABOLISM”. Turkish Medical Student Journal 7/2 (Haziran 2020), 106-113.
JAMA Başpınar B, Yabancı Ayhan N. POSSIBLE BENEFICIAL EFFECTS OF VITAMIN K AND OSTEOCALCIN ON GLUCOSE METABOLISM. TMSJ. 2020;7:106–113.
MLA Başpınar, Büşra ve Nurcan Yabancı Ayhan. “POSSIBLE BENEFICIAL EFFECTS OF VITAMIN K AND OSTEOCALCIN ON GLUCOSE METABOLISM”. Turkish Medical Student Journal, c. 7, sy. 2, 2020, ss. 106-13.
Vancouver Başpınar B, Yabancı Ayhan N. POSSIBLE BENEFICIAL EFFECTS OF VITAMIN K AND OSTEOCALCIN ON GLUCOSE METABOLISM. TMSJ. 2020;7(2):106-13.