Araştırma Makalesi
BibTex RIS Kaynak Göster

GENELLEŞTİRİLMİŞ HİPERBOLİK DAĞILIMLAR İLE RİSKE MARUZ DEĞER: BIST100 ENDEKSİ ÜZERİNE BİR UYGULAMA

Yıl 2017, Cilt: 19 Sayı: 1, 261 - 274, 30.06.2017

Öz

Riske
Maruz Değer(RMD) uygulamalarında getiri dağılımı üzerine yapılan varsayımlar
önemli bir rol oynamaktadır. Yıllar içinde yapılan çalışmalar göstermiştir ki
birçok finansal ürüne ait günlük getiri dağılımları, kalın ya da yarı-kalın
kuyruk yapısı sergilemektedir. Bu çalışmada, 2010-2016 dönemi için BIST100
endeksine ait günlük getiriler yarı-kalın kuyruk yapısı sergileyen
Genelleştirilmiş Hiperbolik Dağılımlar(GHD) ile modellenecektir. Bu amaçla, GHD
ve aileye ait Normal Ters Gauss Dağılımı ile Genelleştirilmiş Hiperbolik
Çarpık-t dağılımı için günlük getiriler kullanılarak parametre tahminleri
yapılacak ve dağılımların uygunluğu test edilecektir. Son olarak, elde edilen
parametre tahminleri kullanılarak RMD yöntemi ve GHD ailesinin performansları
geriye dönük testlerle karşılaştırılacaktır. 

Kaynakça

  • Aas, K., Haff, D.H, “The Generalised Hyperbolic Skew Student’s t-Distribution”, Journal of Financial Econometrics, 4, 275–309, 2006.
  • Barndorff-Nıelsen, O. E., “Exponential Decreasing Distributions of the Logarithm of Particle Size”, Proceedings of the Royal Society London, A, 353, 401-419, 1977.
  • Bolvıken, E., Benth, F.E, “Quantification of Risk in Norwegian Stocks via the Normal Inverse Gaussian Distribution”, The 10th AFIR Colloquium, Tromso, Norway, 87–98, 2000.
  • Borak, S., Mısıorek, A., Weron, R., “Models for Heavy-Tailed Asset Returns”, Statistical Tools for Finance and Insurance, Ed. P. Cizek, W. Härdle, R. Weron), Springer, 21-56, 2011.
  • Danıelsson, J. , de Vrıes, C. G., “Tail Index Estimation with very High Frequency Data”, Journal of Empirical Finance,4, 241-257, 1997.
  • Eberleın, E., Keller, U., “Hyperbolic Distributions in Finance”, Bernoulli, 1(3), 281-299, 1995.
  • Embrechts, P., Resnıck, S. , Samorodnıtsky, G., “Extreme Value Theory as a Risk Management Tool”, North American Actuarial Journal, 3(2), 30-41, 1999.
  • Fama, E., “The behavior of stock market prices”, Journal of Business, 38, 34-105, 1965.
  • Gençay, R., Selçuk, F., “Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets”, International Journal of Forecasting, 20, 287– 303, 2004.
  • Ho, L.C., Burrıdge, P., Cadle, J., Theobald, M., “Value-at-Risk: Applying the Extreme Value Approach to Asian Markets in the Recent Financial Turmoil”, Pacific-Basin Finance Journal 8, 249-275, 2000.
  • Hu, W., Kercheval, A., “Risk Management with Generalized Hyperbolic Distributions”, The Fourth IASTED International Conference on Financial Engineering and Applications, California, USA, 19-24, 2007.
  • Huang, C.K., Chınhamu, K., Huang, C.S., Hammujuddy, J., “Generalized Hyperbolic Distributions and Value-at-Risk Estimation for The South African Mining Index”, International Business & Economics Research Journal, 13, 320-328, 2014.
  • Huısman, R., Koedıjk, K., Pownall, R., “VaR-x: Fat Tails in Financial Risk Management”, Journal of Risk, 1, 47–60, 1998.
  • Hurst, S. R., Platen, E., "The Marginal Distributions of Returns and Volatility", L1 Statistical Procedures and Related Topics, (Ed. Y. Dodge), Hayward, CA: Institute of Mathematical Statistics, 31, 301-314, 1997.
  • Kupıec, P., “Techniques for Verifying the Accuracy of Risk Measurement Models”, Journal of Derivatives, 3(2), 73–84, 1995.
  • Lıllestol, J., “Risk analysis and the NIG distribution”, Journal of Risk, 2, 41–56, 2000.
  • Longın, F. M., “The Asymptotic Distribution of Extreme Stock Market Returns”, The Journal of Business, 69(3) 383–408, 1996.
  • Mabıtsela, L., Mare, E., Kufakunesu, R., “Quantification of VaR: A Note on VaR Valuation in the South African Equity Market”, Journal of Risk and Financial Management, 8(1), 103-126, 2015.
  • Mandelbrot, B., “The Variation of Certain Speculative Prices”, Journal of Business, 36, 394-419, 1963.
  • McNeil, A. J., “Calculating Quantile Risk Measures for Financial Time Series Using Extreme Value Theory”, Department of Mathematics, ETH. Swiss Federal Technical University E-Collection, http://e-collection.ethbib.ethz.ch/, 1998.
  • Prause, K., “The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures”. Basılmamoş Doktora Tezi, University of Freiburg, 1999.
  • Rydberg, T. H., “The Normal Inverse Gaussian Levy Pocess: Simulation and Approximation”, Communications in Statistics: Stochastic Models, 13, 887–910, 1997.
  • Wentzel, C., Mare, E., “Extreme Value Theory-An Application to the South African Equity Market”, Investment Analysts Journal, 66, 73–77, 2007.
Yıl 2017, Cilt: 19 Sayı: 1, 261 - 274, 30.06.2017

Öz

Kaynakça

  • Aas, K., Haff, D.H, “The Generalised Hyperbolic Skew Student’s t-Distribution”, Journal of Financial Econometrics, 4, 275–309, 2006.
  • Barndorff-Nıelsen, O. E., “Exponential Decreasing Distributions of the Logarithm of Particle Size”, Proceedings of the Royal Society London, A, 353, 401-419, 1977.
  • Bolvıken, E., Benth, F.E, “Quantification of Risk in Norwegian Stocks via the Normal Inverse Gaussian Distribution”, The 10th AFIR Colloquium, Tromso, Norway, 87–98, 2000.
  • Borak, S., Mısıorek, A., Weron, R., “Models for Heavy-Tailed Asset Returns”, Statistical Tools for Finance and Insurance, Ed. P. Cizek, W. Härdle, R. Weron), Springer, 21-56, 2011.
  • Danıelsson, J. , de Vrıes, C. G., “Tail Index Estimation with very High Frequency Data”, Journal of Empirical Finance,4, 241-257, 1997.
  • Eberleın, E., Keller, U., “Hyperbolic Distributions in Finance”, Bernoulli, 1(3), 281-299, 1995.
  • Embrechts, P., Resnıck, S. , Samorodnıtsky, G., “Extreme Value Theory as a Risk Management Tool”, North American Actuarial Journal, 3(2), 30-41, 1999.
  • Fama, E., “The behavior of stock market prices”, Journal of Business, 38, 34-105, 1965.
  • Gençay, R., Selçuk, F., “Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets”, International Journal of Forecasting, 20, 287– 303, 2004.
  • Ho, L.C., Burrıdge, P., Cadle, J., Theobald, M., “Value-at-Risk: Applying the Extreme Value Approach to Asian Markets in the Recent Financial Turmoil”, Pacific-Basin Finance Journal 8, 249-275, 2000.
  • Hu, W., Kercheval, A., “Risk Management with Generalized Hyperbolic Distributions”, The Fourth IASTED International Conference on Financial Engineering and Applications, California, USA, 19-24, 2007.
  • Huang, C.K., Chınhamu, K., Huang, C.S., Hammujuddy, J., “Generalized Hyperbolic Distributions and Value-at-Risk Estimation for The South African Mining Index”, International Business & Economics Research Journal, 13, 320-328, 2014.
  • Huısman, R., Koedıjk, K., Pownall, R., “VaR-x: Fat Tails in Financial Risk Management”, Journal of Risk, 1, 47–60, 1998.
  • Hurst, S. R., Platen, E., "The Marginal Distributions of Returns and Volatility", L1 Statistical Procedures and Related Topics, (Ed. Y. Dodge), Hayward, CA: Institute of Mathematical Statistics, 31, 301-314, 1997.
  • Kupıec, P., “Techniques for Verifying the Accuracy of Risk Measurement Models”, Journal of Derivatives, 3(2), 73–84, 1995.
  • Lıllestol, J., “Risk analysis and the NIG distribution”, Journal of Risk, 2, 41–56, 2000.
  • Longın, F. M., “The Asymptotic Distribution of Extreme Stock Market Returns”, The Journal of Business, 69(3) 383–408, 1996.
  • Mabıtsela, L., Mare, E., Kufakunesu, R., “Quantification of VaR: A Note on VaR Valuation in the South African Equity Market”, Journal of Risk and Financial Management, 8(1), 103-126, 2015.
  • Mandelbrot, B., “The Variation of Certain Speculative Prices”, Journal of Business, 36, 394-419, 1963.
  • McNeil, A. J., “Calculating Quantile Risk Measures for Financial Time Series Using Extreme Value Theory”, Department of Mathematics, ETH. Swiss Federal Technical University E-Collection, http://e-collection.ethbib.ethz.ch/, 1998.
  • Prause, K., “The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures”. Basılmamoş Doktora Tezi, University of Freiburg, 1999.
  • Rydberg, T. H., “The Normal Inverse Gaussian Levy Pocess: Simulation and Approximation”, Communications in Statistics: Stochastic Models, 13, 887–910, 1997.
  • Wentzel, C., Mare, E., “Extreme Value Theory-An Application to the South African Equity Market”, Investment Analysts Journal, 66, 73–77, 2007.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi
Yazarlar

Ayşegül İşcanoğlu Çekiç

Yayımlanma Tarihi 30 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 19 Sayı: 1

Kaynak Göster

APA İşcanoğlu Çekiç, A. (2017). GENELLEŞTİRİLMİŞ HİPERBOLİK DAĞILIMLAR İLE RİSKE MARUZ DEĞER: BIST100 ENDEKSİ ÜZERİNE BİR UYGULAMA. Trakya Üniversitesi Sosyal Bilimler Dergisi, 19(1), 261-274.
AMA İşcanoğlu Çekiç A. GENELLEŞTİRİLMİŞ HİPERBOLİK DAĞILIMLAR İLE RİSKE MARUZ DEĞER: BIST100 ENDEKSİ ÜZERİNE BİR UYGULAMA. Trakya University Journal of Social Science. Haziran 2017;19(1):261-274.
Chicago İşcanoğlu Çekiç, Ayşegül. “GENELLEŞTİRİLMİŞ HİPERBOLİK DAĞILIMLAR İLE RİSKE MARUZ DEĞER: BIST100 ENDEKSİ ÜZERİNE BİR UYGULAMA”. Trakya Üniversitesi Sosyal Bilimler Dergisi 19, sy. 1 (Haziran 2017): 261-74.
EndNote İşcanoğlu Çekiç A (01 Haziran 2017) GENELLEŞTİRİLMİŞ HİPERBOLİK DAĞILIMLAR İLE RİSKE MARUZ DEĞER: BIST100 ENDEKSİ ÜZERİNE BİR UYGULAMA. Trakya Üniversitesi Sosyal Bilimler Dergisi 19 1 261–274.
IEEE A. İşcanoğlu Çekiç, “GENELLEŞTİRİLMİŞ HİPERBOLİK DAĞILIMLAR İLE RİSKE MARUZ DEĞER: BIST100 ENDEKSİ ÜZERİNE BİR UYGULAMA”, Trakya University Journal of Social Science, c. 19, sy. 1, ss. 261–274, 2017.
ISNAD İşcanoğlu Çekiç, Ayşegül. “GENELLEŞTİRİLMİŞ HİPERBOLİK DAĞILIMLAR İLE RİSKE MARUZ DEĞER: BIST100 ENDEKSİ ÜZERİNE BİR UYGULAMA”. Trakya Üniversitesi Sosyal Bilimler Dergisi 19/1 (Haziran 2017), 261-274.
JAMA İşcanoğlu Çekiç A. GENELLEŞTİRİLMİŞ HİPERBOLİK DAĞILIMLAR İLE RİSKE MARUZ DEĞER: BIST100 ENDEKSİ ÜZERİNE BİR UYGULAMA. Trakya University Journal of Social Science. 2017;19:261–274.
MLA İşcanoğlu Çekiç, Ayşegül. “GENELLEŞTİRİLMİŞ HİPERBOLİK DAĞILIMLAR İLE RİSKE MARUZ DEĞER: BIST100 ENDEKSİ ÜZERİNE BİR UYGULAMA”. Trakya Üniversitesi Sosyal Bilimler Dergisi, c. 19, sy. 1, 2017, ss. 261-74.
Vancouver İşcanoğlu Çekiç A. GENELLEŞTİRİLMİŞ HİPERBOLİK DAĞILIMLAR İLE RİSKE MARUZ DEĞER: BIST100 ENDEKSİ ÜZERİNE BİR UYGULAMA. Trakya University Journal of Social Science. 2017;19(1):261-74.
Resim

Trakya Üniversitesi Sosyal Bilimler Dergisi Creative Commons Attribution 4.0 ile lisanslanmıştır.