Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Underwater Distance and Speed on Performance in Freestyle and Butterfly Style Sprint Races

Yıl 2025, Cilt: 27 Sayı: 3, 514 - 522, 31.12.2025

Öz

Abstract

This study aimed to investigate the effects of underwater distance and underwater velocity, measured from the starting dive, on the 25 m and 50 m swimming speeds of male swimmers in short-distance freestyle and butterfly events. Data were collected from swimmers aged 12.34 (±0.36) years, with a training age of 2.82 (±0.67) years, a body height of 153.20 (±7.55) cm, a body mass of 44.53 (±8.05) kg, and a body mass index of 18.90 (±2.47) kg/m². A total of 164 male swimmers voluntarily participated in the study (74 competed in both freestyle and butterfly, 37 only in freestyle, and 35 only in butterfly). Their race performances were recorded throughout the competition using three cameras positioned around the pool. The video footage was analyzed with Kinovea 2023.1.2 software to determine underwater distances and durations, the first and second 25 m split times. The data were normally distributed and analyzed using simple linear regression. Regression analyses revealed that, among fast freestyle swimmers, underwater velocity (R² = .564, p = .001) and underwater distance (R² = .361, p = .001) significantly contributed to 50 m race performance. Similarly, for fast butterfly swimmers, underwater velocity (R² = .345, p = .001) and underwater distance (R² = .272, p = .001) were identified as significant predictors of 50 m race speed. The findings indicate that underwater velocity is a key performance variable contributing to the 50 m race speed across all groups. However, among faster swimmers, underwater distance also provided an additional significant contribution. This suggests that elite swimmers not only exhibit higher underwater velocities but also make more efficient use of their underwater distance. It is recommended that researchers and coaches emphasize individualized optimization of underwater distance and velocity in training programs to enhance race performance in short-distance events.
Keywords: underwater distance, underwater velocity, short distance, swimming race, performance

Etik Beyan

Marmara Üniversitesi Sağlık Bilimleri Fakültesi

Destekleyen Kurum

NO

Proje Numarası

12-3/16.05.2025

Teşekkür

I would like to thank Prof. Dr. Nusret Ramazanoğlu for his contributions

Kaynakça

  • 1. Aprilo. I., Arfanda. P. E., Mappaompo. M. A., Rizal. A., & Asyhari. H. (2025). Biomechanical analysis of tennis spin serve technique using Kinovea in beginner athletes in South Sulawesi. Journal Physical Health Recreation. 5(2). 472-478. https://doi.org/10.55081/jphr.v5i2.3943
  • 2. Barbosa. A. C., Barroso. R., Gonjo. T., Rossi. M. M., Paolucci. L. A., Olstad. B. H., & Andrade. A. G. (2021). 50 m freestyle in 21. 22 and 23 s: What differentiates the speed curve of world-class and elite male swimmers?. International Journal of Performance Analysis in Sport. 21(6). 1055-1065. https://doi.org/10.1080/24748668.2021.1971509
  • 3. Born, D. P., Romann, M., & Stöggl, T. (2022). Start fast, swim faster, turn fastest: section analyses and normative data for individual medley. Journal of Sports Science & Medicine, 21(2), 233.
  • 4. Bratta, C. (2024). Exploring Sex Differences in Diving Performance Analysis.
  • 5. Collard, L., Gourmelin, E., & Schwob, V. (2013). The fifth stroke: The effect of learning the dolphin kick technique on swimming speed in 22 novice swimmers. Journal of Swimming Research, 21(1), 1-15.
  • 6. Cossor, J., & Mason, B. (2001). Swim start performances at the Sydney 2000 Olympic Games. XIX International Symposium on Biomechanics in Sports, USA, 65-69.
  • 7. Gatta. G., Cortesi. M., Fantozzi. S., & Zamparo. P. (2015). Planimetric frontal area in the four swimming strokes: Implications for drag, energetics and speed. Human movement science. 39. 41-54.energetics and speed. Hum Mov Sci 2015; 39: 41-54
  • 8. González-Ravé. J. M., Santos-Cerro. J., González-Megía. P., & Pyne. D. (2023). Contributions of each of the four swimming strokes to elite 200-400 individual medley swimming performance in short and long course competitions. PeerJ. 11. e16612.
  • 9. Liu. H., Kolomenskiy. D., Nakata. T., & Li. G. (2017). Unsteady bio-fluid dynamics in flying and swimming. Acta Mechanica Sinica. 33(4). 663-684.
  • 10. López-Plaza. D., Quero-Calero. C. D., Alacid. F., & Abellán-Aynés. O. (2024). Stroke steadiness as a determinant factor of performance in 100 m freestyle in young swimmers. Sports. 12(4). 107. https://doi.org/10.3390/sports12040107
  • 11. Lorenzo-Calvo, J., de la Rubia, A., Mon-López, D., Hontoria-Galán, M., Marquina, M., & Veiga, S. (2021). Prevalence and impact of the relative age effect on competition performance in swimming: a systematic review. International Journal of Environmental Research and Public Health, 18(20), 10561.
  • 12. Marinho, D. A., Barbosa, T. M., Neiva, H. P., Moriyama, S. I., Silva, A. J., & Morais, J. E. (2021). The effect of the start and finish in the 50 m and 100 m freestyle performance in elite male swimmers. International Journal of Performance Analysis in Sport, 21(6), 1041-1054.
  • 13. McCabe. C. B., Sanders. R. H., & Psycharakis. S. G. (2015). Upper limb kinematic differences between breathing and non-breathing conditions in front crawl sprint swimming. Journal of Biomechanics. 48(15). 3995-4001.
  • 14. Morais. J. E., Marinho. D. A., Neiva. H. P., Moriyama. S. I., & Barbosa. T. M. (2025). Swimming speed comparison between two distinct arm pulls during the butterfly swim stroke. International Journal of Sports Science & Coaching. 17479541251350363.
  • 15. Morais, J E., Barbosa, T. M., Forte, P., Pinto, J. N., & Marinho, D. A. (2024). Assessment of the inter-lap stability and relationship between the race time and start, clean swim, turn and finish variables in elite male junior swimmers’ 200 m freestyle. Sports Biomechanics, 23(10), 1578-1591.
  • 16. Nicol. E., Pearson. S., Saxby. D., Minahan. C., & Tor. E. (2022). Stroke kinematics. temporal patterns. neuromuscular activity. pacing and kinetics in elite breaststroke swimming: a systematic review. Sports Medicine-Open. 8(1). 75. https://doi.org/10.1186/s40798-022-00467-2
  • 17. Olstad, B. H., Wathne, H., & Gonjo, T. (2020). Key factors related to short course 100 m breaststroke performance. International Journal of Environmental Research and Public Health, 17(17), 6257.
  • 18. Özüak, A. (2023). Teknikleri ile hızlı yüzme (1. baskı). İstanbul Tıp Kitapevi.
  • 19. Ruiz-Navarro. J. J., Santos. C. C., Born. D. P., López-Belmonte. Ó., Cuenca-Fernández. F., Sanders. R. H., & Arellano. R. (2025). Factors relating to sprint swimming performance: A systematic review. Sports Medicine. 55. 899-922. https://doi.org/10.1007/s40279-024-02172-4
  • 20. Santos. C. C., Marinho. D. A., Neiva. H. P., & Costa. M. J. (2024). Propulsive forces in human competitive swimming: A systematic review on direct assessment methods: Propulsive forces in competitive swimming. Sports Biomechanics. 23(10). 1263-1283. https://doi.org/10.1080/14763141.2021.1953574
  • 21. Seifert. L., & Carmigniani. R. (2023). Coordination and stroking parameters in the four swimming techniques: a narrative review. Sports Biomechanics. 22(12). 1617-1633. https://doi.org/10.1080/14763141.2021.1959945
  • 22. Sima, E. D., & Potop, V. (2018). Learning the Swimming Start by Students in Higher Education of other Profiles. Romanian Journal for Multidimensional Education/Revista Românească pentru Educaţie Multidimensională, 10(1).
  • 23. Strzała. M., Stanula. A., Krężałek. P., Ostrowski. A., Kaca. M., & Głąb. G. (2017). Butterfly sprint swimming technique. analysis of somatic and spatial-temporal coordination variables. Journal of Human Kinetics. 60. 51.
  • 24. Stosic, J., Veiga, S., Trinidad, A., & Navarro, E. (2020). How should the transition from underwater to surface swimming be performed by competitive swimmers?. Applied Sciences, 11(1), 122. https://doi.org/10.1080/14763141.2022.2033306
  • 25. Şimşek. H. B., & Özüak. A. (2024). 11-12 Yaş erkek yüzücülerin 50 metre serbest yarışmasında her kolda kat edilen mesafenin yüzme süresi ile ilişkisi. Journal of OZ Sport Sciences. 1(2).
  • 26. Takagi. H., Nakashima. M., Sengoku. Y., Tsunokawa. T., Koga. D., Narita. K., .,. & Gonjo. T. (2023). How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives. Sports Biomechanics. 22(12). 1552-1571. https://doi.org/10.1080/14763141.2021.1959946
  • 27. Veiga, S., & Roig, A. (2017). Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers. Sports biomechanics, 16(1), 34-44. https://doi.org/10.3390/app11010122
  • 28. Zamparo. P., Cortesi. M., & Gatta. G. (2020). The energy cost of swimming and its determinants. European Journal of Applied Physiology. 120(1). 41-66. http://doi.org/10.1007/s00421-019-04270-y

Serbest ve Kelebek Stil Yarışında Depar Sualtı Mesafesi ve Hızının Performansa Etkisi

Yıl 2025, Cilt: 27 Sayı: 3, 514 - 522, 31.12.2025

Öz

ÖZ
Bu çalışmanın amacı kısa mesafe yüzme yarışlarında, erkek yüzücülerin elli metre serbest ve kelebek depar çıkışı itibari ile sulatı mesafesi ve sualtı hızının 25m ve 50m hızına olan etkileri araştırılmıştır. Bu araştırmaya, yaşları 12,34 (± ,36) yıl, antrenman yaşı 2,82 (± ,67) yıl, boy uzunluğu, 153,20 (± 7,55) m, vücut ağırlığı 44,53 (± ,8,05) kg, vücut kitle endeksi 18,90 (± 2,47) kg/m2 olan yüzücülerin verileri ele alınmıştır. Araştırmaya gönüllü olarak katılan 164 erkek yüzücünün (84’ü hem serbest, hem kelebek, sadece serbest 43 ve kelebek stillerinde 37) yarışma anında sergiledikleri performans havuza yerleştirilen üç kamera yolu ile baştan sona kaydedilmiştir. Video görüntüleri Kinovea-2023.1.2. programına aktarılarak sualtı çıkış mesafe ve süreleri, birinci ve ikinci yirmibeş metre geçiş süreleri, atılan kol sayıları, kulaç sıklığı, kulaç mesafeleri belirlenmiştir. Veriler normal dağılım göstermiş doğrusal regresyon ile analizleri yapılmıştır. 50 metre serbest stil yüzen yüzücülerin sualtı hızı, hızlı yüzen yüzücülerde (R2= .564, p= 0.001), sualtı mesafesi (R2= .361, p= 0.001*) katkı sağlarken, 50 metre kelebek stil hızlı yüzen yüzücülerin sualtı hızı, hızlı yüzen (R2= .345, p= 0.001), sualtı mesafesi (R2= .272, p= 0.001*) etkide bulunduğu saptanmıştır. Çalışmaya dahil olan gönüllü katılan yüzücülerin ölçümlerinden elde edilen veriler göstermiştir ki sualtı hızı her dört grupta da 50m hızına katkıda bulunan önemli değişkenidir. Ancak hızlı yüzücülerde, sualtı mesafesinin de ek olarak anlamlı katkı sağladığı görülmektedir. Bu bulgu, üst düzey yüzücülerin hem yüksek sualtı hızına hem de daha uzun etkin mesafe kullanımına sahip olduklarını ortaya koymaktadır. Araştırmacı ve antrenörlerin yüzme performansının değerlendirilmesinde ve geliştirilmesinde yüzücülerin kendilerine en uygun sualtı mesafe ve hızları üzerinde gereken önemi göstererek yarışma hızına yansıtılmasına yönelik programları üretmeleri kısa mesafe yarışmaları için önem vermeleri yerinde olacaktır.

Etik Beyan

Marmara Üniversitesi Sağlık Bilimleri Fakültesi

Destekleyen Kurum

yok

Proje Numarası

12-3/16.05.2025

Teşekkür

Katkıları için Prof Dr. Nusret Ramazanoğlu'na teşekkür ederim.

Kaynakça

  • 1. Aprilo. I., Arfanda. P. E., Mappaompo. M. A., Rizal. A., & Asyhari. H. (2025). Biomechanical analysis of tennis spin serve technique using Kinovea in beginner athletes in South Sulawesi. Journal Physical Health Recreation. 5(2). 472-478. https://doi.org/10.55081/jphr.v5i2.3943
  • 2. Barbosa. A. C., Barroso. R., Gonjo. T., Rossi. M. M., Paolucci. L. A., Olstad. B. H., & Andrade. A. G. (2021). 50 m freestyle in 21. 22 and 23 s: What differentiates the speed curve of world-class and elite male swimmers?. International Journal of Performance Analysis in Sport. 21(6). 1055-1065. https://doi.org/10.1080/24748668.2021.1971509
  • 3. Born, D. P., Romann, M., & Stöggl, T. (2022). Start fast, swim faster, turn fastest: section analyses and normative data for individual medley. Journal of Sports Science & Medicine, 21(2), 233.
  • 4. Bratta, C. (2024). Exploring Sex Differences in Diving Performance Analysis.
  • 5. Collard, L., Gourmelin, E., & Schwob, V. (2013). The fifth stroke: The effect of learning the dolphin kick technique on swimming speed in 22 novice swimmers. Journal of Swimming Research, 21(1), 1-15.
  • 6. Cossor, J., & Mason, B. (2001). Swim start performances at the Sydney 2000 Olympic Games. XIX International Symposium on Biomechanics in Sports, USA, 65-69.
  • 7. Gatta. G., Cortesi. M., Fantozzi. S., & Zamparo. P. (2015). Planimetric frontal area in the four swimming strokes: Implications for drag, energetics and speed. Human movement science. 39. 41-54.energetics and speed. Hum Mov Sci 2015; 39: 41-54
  • 8. González-Ravé. J. M., Santos-Cerro. J., González-Megía. P., & Pyne. D. (2023). Contributions of each of the four swimming strokes to elite 200-400 individual medley swimming performance in short and long course competitions. PeerJ. 11. e16612.
  • 9. Liu. H., Kolomenskiy. D., Nakata. T., & Li. G. (2017). Unsteady bio-fluid dynamics in flying and swimming. Acta Mechanica Sinica. 33(4). 663-684.
  • 10. López-Plaza. D., Quero-Calero. C. D., Alacid. F., & Abellán-Aynés. O. (2024). Stroke steadiness as a determinant factor of performance in 100 m freestyle in young swimmers. Sports. 12(4). 107. https://doi.org/10.3390/sports12040107
  • 11. Lorenzo-Calvo, J., de la Rubia, A., Mon-López, D., Hontoria-Galán, M., Marquina, M., & Veiga, S. (2021). Prevalence and impact of the relative age effect on competition performance in swimming: a systematic review. International Journal of Environmental Research and Public Health, 18(20), 10561.
  • 12. Marinho, D. A., Barbosa, T. M., Neiva, H. P., Moriyama, S. I., Silva, A. J., & Morais, J. E. (2021). The effect of the start and finish in the 50 m and 100 m freestyle performance in elite male swimmers. International Journal of Performance Analysis in Sport, 21(6), 1041-1054.
  • 13. McCabe. C. B., Sanders. R. H., & Psycharakis. S. G. (2015). Upper limb kinematic differences between breathing and non-breathing conditions in front crawl sprint swimming. Journal of Biomechanics. 48(15). 3995-4001.
  • 14. Morais. J. E., Marinho. D. A., Neiva. H. P., Moriyama. S. I., & Barbosa. T. M. (2025). Swimming speed comparison between two distinct arm pulls during the butterfly swim stroke. International Journal of Sports Science & Coaching. 17479541251350363.
  • 15. Morais, J E., Barbosa, T. M., Forte, P., Pinto, J. N., & Marinho, D. A. (2024). Assessment of the inter-lap stability and relationship between the race time and start, clean swim, turn and finish variables in elite male junior swimmers’ 200 m freestyle. Sports Biomechanics, 23(10), 1578-1591.
  • 16. Nicol. E., Pearson. S., Saxby. D., Minahan. C., & Tor. E. (2022). Stroke kinematics. temporal patterns. neuromuscular activity. pacing and kinetics in elite breaststroke swimming: a systematic review. Sports Medicine-Open. 8(1). 75. https://doi.org/10.1186/s40798-022-00467-2
  • 17. Olstad, B. H., Wathne, H., & Gonjo, T. (2020). Key factors related to short course 100 m breaststroke performance. International Journal of Environmental Research and Public Health, 17(17), 6257.
  • 18. Özüak, A. (2023). Teknikleri ile hızlı yüzme (1. baskı). İstanbul Tıp Kitapevi.
  • 19. Ruiz-Navarro. J. J., Santos. C. C., Born. D. P., López-Belmonte. Ó., Cuenca-Fernández. F., Sanders. R. H., & Arellano. R. (2025). Factors relating to sprint swimming performance: A systematic review. Sports Medicine. 55. 899-922. https://doi.org/10.1007/s40279-024-02172-4
  • 20. Santos. C. C., Marinho. D. A., Neiva. H. P., & Costa. M. J. (2024). Propulsive forces in human competitive swimming: A systematic review on direct assessment methods: Propulsive forces in competitive swimming. Sports Biomechanics. 23(10). 1263-1283. https://doi.org/10.1080/14763141.2021.1953574
  • 21. Seifert. L., & Carmigniani. R. (2023). Coordination and stroking parameters in the four swimming techniques: a narrative review. Sports Biomechanics. 22(12). 1617-1633. https://doi.org/10.1080/14763141.2021.1959945
  • 22. Sima, E. D., & Potop, V. (2018). Learning the Swimming Start by Students in Higher Education of other Profiles. Romanian Journal for Multidimensional Education/Revista Românească pentru Educaţie Multidimensională, 10(1).
  • 23. Strzała. M., Stanula. A., Krężałek. P., Ostrowski. A., Kaca. M., & Głąb. G. (2017). Butterfly sprint swimming technique. analysis of somatic and spatial-temporal coordination variables. Journal of Human Kinetics. 60. 51.
  • 24. Stosic, J., Veiga, S., Trinidad, A., & Navarro, E. (2020). How should the transition from underwater to surface swimming be performed by competitive swimmers?. Applied Sciences, 11(1), 122. https://doi.org/10.1080/14763141.2022.2033306
  • 25. Şimşek. H. B., & Özüak. A. (2024). 11-12 Yaş erkek yüzücülerin 50 metre serbest yarışmasında her kolda kat edilen mesafenin yüzme süresi ile ilişkisi. Journal of OZ Sport Sciences. 1(2).
  • 26. Takagi. H., Nakashima. M., Sengoku. Y., Tsunokawa. T., Koga. D., Narita. K., .,. & Gonjo. T. (2023). How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives. Sports Biomechanics. 22(12). 1552-1571. https://doi.org/10.1080/14763141.2021.1959946
  • 27. Veiga, S., & Roig, A. (2017). Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers. Sports biomechanics, 16(1), 34-44. https://doi.org/10.3390/app11010122
  • 28. Zamparo. P., Cortesi. M., & Gatta. G. (2020). The energy cost of swimming and its determinants. European Journal of Applied Physiology. 120(1). 41-66. http://doi.org/10.1007/s00421-019-04270-y
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Antrenman
Bölüm Araştırma Makalesi
Yazarlar

Ali Özüak 0000-0003-1453-4946

Proje Numarası 12-3/16.05.2025
Gönderilme Tarihi 24 Ekim 2025
Kabul Tarihi 23 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 3

Kaynak Göster

APA Özüak, A. (2025). The Effect of Underwater Distance and Speed on Performance in Freestyle and Butterfly Style Sprint Races. Turkish Journal of Sport and Exercise, 27(3), 514-522. https://doi.org/10.15314/tsed.1810119
AMA Özüak A. The Effect of Underwater Distance and Speed on Performance in Freestyle and Butterfly Style Sprint Races. Turkish Journal of Sport and Exercise. Aralık 2025;27(3):514-522. doi:10.15314/tsed.1810119
Chicago Özüak, Ali. “The Effect of Underwater Distance and Speed on Performance in Freestyle and Butterfly Style Sprint Races”. Turkish Journal of Sport and Exercise 27, sy. 3 (Aralık 2025): 514-22. https://doi.org/10.15314/tsed.1810119.
EndNote Özüak A (01 Aralık 2025) The Effect of Underwater Distance and Speed on Performance in Freestyle and Butterfly Style Sprint Races. Turkish Journal of Sport and Exercise 27 3 514–522.
IEEE A. Özüak, “The Effect of Underwater Distance and Speed on Performance in Freestyle and Butterfly Style Sprint Races”, Turkish Journal of Sport and Exercise, c. 27, sy. 3, ss. 514–522, 2025, doi: 10.15314/tsed.1810119.
ISNAD Özüak, Ali. “The Effect of Underwater Distance and Speed on Performance in Freestyle and Butterfly Style Sprint Races”. Turkish Journal of Sport and Exercise 27/3 (Aralık2025), 514-522. https://doi.org/10.15314/tsed.1810119.
JAMA Özüak A. The Effect of Underwater Distance and Speed on Performance in Freestyle and Butterfly Style Sprint Races. Turkish Journal of Sport and Exercise. 2025;27:514–522.
MLA Özüak, Ali. “The Effect of Underwater Distance and Speed on Performance in Freestyle and Butterfly Style Sprint Races”. Turkish Journal of Sport and Exercise, c. 27, sy. 3, 2025, ss. 514-22, doi:10.15314/tsed.1810119.
Vancouver Özüak A. The Effect of Underwater Distance and Speed on Performance in Freestyle and Butterfly Style Sprint Races. Turkish Journal of Sport and Exercise. 2025;27(3):514-22.
Türk Spor ve Egzersiz Dergisi (TJSE) Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.