Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 217 - 222, 15.09.2019
https://doi.org/10.15314/tsed.560865

Öz

Kaynakça

  • 1. Aguirre F, Martin I, Grinspon D, Ruiz M, Hager A, de Paoli T, Ihlo J, Farach HA, Poole CP. Oxidative damage, plasma antioxidant capacity and glucemic control in elderly NIDDM patients-Possible implications for diabetic atherosclerosis. Free Radic Biol Med, 1998; 24(4): 580-585.
  • 2. Aksoy N, Vural H, Sabuncu T, Aksoy S. Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem Funct, 2003; 21(2): 121-125.
  • 3. Allegra M, Reiter RJ, Tan DX, Gentile C, Tesoriere L, Livrea MA. The chemistry of melatonin's interaction with reactive species. J Pineal Res, 2003; 34(1): 1-10.
  • 4. Ashour M, Salem S, Hassaneen H, El-Gadban H, Elwan N, Awad A, Basu TK. Antioxidant status and insulin-dependent diabetes mellitus (IDDM). J Clin Biochem Nutr, 1999; 26(2): 99-107.
  • 5. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes, 1991; 40(4): 405-412.
  • 6. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes, 1999; 48(1): 1-9.
  • 7. Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat JH, Carlberg C. Pineal gland hormone melatonin binds and activates an orphan of nucleur receptor superfamily. J Biol Chem, 1994; 269(46): 28531-28534.
  • 8. Bojunga J, Dresar-Mayert B, Usadel KH, Kusterer K, Zeuzem S. Antioxidative treatment reverses imbalances of nitric oxide synthase isoform expression and attenuates tissue-cGMP activation in diabetic rats. Biochem Biophys Res Commun, 2004; 316(3): 771-780.
  • 9. Brzezinski A. Melatonin in humans. N Engl J Med, 1997; 336(3): 186-195.
  • 10. Ceriello A. Oxidative stress and glycemic regulation. Metabolism, 2000; 49(2): 27-29.
  • 11. Ceriello A, Bortolotti N, Crescentini A, Motz E, Lizzio S, Russo A, Ezsol Z, Tonutti L, Taboga C. Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur J Clin Invest, 1998; 28: 329-333.
  • 12. Chang KC, Chung SY, Chong WS, Suh JS, Kim SH, Noh HK, Seong BW, Ko HJ, Chun KW. Possible superoxide radical-induced alteration of vascular reactivity in aortas from streptozotocin-treated rats. J Pharmacol Exp Ther, 1993; 266(2): 992-1000.
  • 13. Derlacz RA, Poplawski P, Napierala M, Jagielski AK, Bryla J. Melatonin-induced modulation of glucose metabolism in primary cultures of rabbit kidney-cortex tubules. J Pineal Res, 2005; 38(3): 164-169.
  • 14. Donder E, Baydas G, Sokmen S, Ercel E, Yalniz M, Dogan H, Bahçeoğlu IH. Investigation of antioxidant and glucometabolic effects of melatonin in experimental diabetes mellitus. Biomed Res, 1999; 10(2): 127-32.
  • 15. Espino J, Pariente JA, Rodríguez AB. Role of melatonin on diabetes-related metabolic disorders. World J Diabetes, 2011; 2(6): 82-91.
  • 16. Feillet C, Roche B, Tauveron I, Bayle D, Rock E, Borel P, Rayssiguier Y, Thieblot P, Mazur A. Susceptibility to oxidation and physicochemical properties of LDL in insulin-dependent diabetics. Atherosclerosis, 1998; 136: 405-407.
  • 17. Ha E, Yim SV, Chung JH, Yoon KS, Kang I, Cho YH, Baik HH. Melatonin stimulates glucose transport via insulin receptor substrate-1/phosphatidylinositol 3-kinase pathway in C2C12 murine skeletal muscle cells. J Pineal Res, 2006; 41(1): 67-72.
  • 18. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: An overview. Meth Enzymol, 1990; 186: 1-85.
  • 19. Kataoka S, Satoh J, Fujiya H, Toyota T, Suzuki R, Itoh K, Kumagai K. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes, 1983; 32(3): 247-253.
  • 20. Kedziora-Kornatowska KZ, Luciak M, Paszkowski J. Lipid peroxidation and activities of antioxidant enzymes in the diabetic kidney: effect of treatment with angiotensin convertase inhibitors. IUBMB Life, 2000; 49(4): 303-307.
  • 21. Kemp DM, Ubeda M, Habener JF. Identification and functional characterization of melatonin Mel 1a receptors in pancreatic beta cells: potential role in incretin-mediated cell function by sensitization of cAMP signaling. Mol Cell Endocrinol, 2002; 191(2): 157-166.
  • 22. Klepac N, Rudeš Z, Klepac R. Effects of melatonin on plasma oxidative stress in rats with streptozotocin induced diabetes. Biomed Pharm, 2005; 60(1): 32-35.
  • 23. Laight DW, Carrier MJ, Anggard EE. Antioxidants, diabetes and endothelial dysfunction. Cardiovasc Res, 2000; 47: 457-464.
  • 24. Legros C, Devavry S, Caignard S, Tessier C, Delagrange P, Ouvry C, Boutin JA, Nosjean O. Melatonin MT(1) and MT(2) receptors display different molecular pharmacologies only in the G-protein coupled state. Br J Pharmacol, 2014; 171(1): 186-201.
  • 25. Like AA, Rossini AA, Guberski DL, Appel MC, Williams RM. Spontaneous diabetes mellitus: Reversal and prevention in the BB/W rat with antiserum to rat lymphocytes. Science, 1979; 206(4425): 1421-1423.
  • 26. Lo CC, Lin SH, Chang JS, Chien YW. Effects of melatonin on glucose homeostasis, antioxidant ability, and adipokine secretion in ICR mice with NA/STZ-induced hyperglycemia. Nutrients, 2017; 9(11): 1187.
  • 27. MacKenzie RS, Melan MA, Passey DK, Witt-Enderby PA. Dual coupling of MT(1) and MT(2) melatonin receptors to cyclic AMP and phosphoinositide signal transduction cascades and their regulation following melatonin exposure. Biochem Pharmacol, 2002; 63(4): 587-595.
  • 28. Makimattila S, Liu ML, Vakkilainen J, Schlenzka A, Lahdenperä S, Syvänne M, Mäntysaari M, Summanen P, Bergholm R, Taskinen MR, Yki-Järvinen H. Impaired endothelium-dependent vasodilation in type 2 diabetes. Relation to LDL size, oxidized LDL, and antioxidants. Diabetes Care, 1999; 22(6): 973-981.
  • 29. Malaisse WJ. Alloxan toxicity to pancreatic B-cells. A new hypothesis. Biochem Pharmacol, 1982; 31(22): 3527-3534.
  • 30. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol, 2003; 17(1): 24-38.
  • 31. Maxwell SRJ, Thomason H, Sandler D, LeGuen C, Baxter MA, Thorpe GHG, Jones AF, Barnett AH. Poor glycaemic control is associated with reduced serum free radical scavenging (antioxidant) activity in Non-Insulin-Dependent Diabetes Mellitus. Ann Clin Biochem, 1997; 34(6): 638-644.
  • 32. McLennan SV, Heffernan S, Wright L, Rae C, Fisher E, Yue DK, Turtle JR. Changes in hepatic glutathione metabolism in diabetes. Diabetes, 1991; 40(3): 344-348.
  • 33. Mohammed A, Adelaiye AB, Bakari AG, Mabrouk MA. Anti-diabetic and some haematological effects of ethylacetate and n-butanol fractions of Ganoderma lucidum aqueous extract in alloxan-induced diabetic wistar rats. Int J Med Medical Sci, 2009; 1(12): 530-535.
  • 34. Mohan IK, Das UN. Oxidant stress, antioxidants and nitric oxide in non-insulin dependent diabetes mellitus. Med Sci Res, 1997; 25: 55-57.
  • 35. Montilla PL, Vargas JF, Tlinez IF, Muñoz de Agueda MC, Valdelvira ME, Cabrera ES. Oxidative stress in diabetic rats induced by streptozotocin: Protective effects of melatonin. J Pineal Res, 1998; 25(2): 94-100.
  • 36. Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine, 2005; 27: 131-136.
  • 37. Paik SG, Blue ML, Fleischer N, Shin S. Diabetes susceptibility of BALB/cBOM mice treated with streptozotocin. Inhibition by lethal irradiation and restoration by splenic lymphocytes. Diabetes, 1982; 31(9): 808-815.
  • 38. Peschke E. Melatonin, endocrine pancreas and diabetes. J Pineal Res, 2008; 44(1): 26-40.
  • 39. Peschke E, Bahr I, Mühlbauer E. Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int J Mol Sci, 2013; 14(4): 6981-7015.
  • 40. Peschke E, Fauteck JD, Musshoff U, Schmidt F, Beckmann A, Peschke D. Evidence for a melatonin receptor within pancreatic islets of neonate rats: functional, autoradiographic, and molecular investigations. J Pineal Res, 2000; 28: 156-164.
  • 41. Picinato MC, Haber EP, Cipolla-Neto J, Curi R, de Oliveira Carvalho CR, Carpinelli AR. Melatonin inhibits insulin secretion and decreases PKA levels without interfering with glucose metabolism in rat pancreatic islets. J Pineal Res, 2002; 33: 156-160.
  • 42. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother, 2005; 59: 365-373.
  • 43. Reiter R, Tang L, Garcia JJ, Munoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci, 1997; 60(25): 2255-2271.
  • 44. Reiter RJ. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J, 1995; 9(7): 526-533.
  • 45. Reiter RJ. Melatonin: lowering the high price of free radicals. News Physiol Sci, 2000; 15: 246-250.
  • 46. Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys, 2001; 34(2): 237-256.
  • 47. Reunanen A, Knekt P, Aaran RK, Aromaa A. Serum antioxidants and risk of non-insulin dependent diabetes mellitus. Eur J Clin Nutr, 1998; 52: 89-93.
  • 48. Robertson RP. Chronic oxidative stress: a central mechanism for glucose toxicity in pancreatic islet beta cell in diabetes. J Biol Chem, 2004; 279(41): 42351-42354.
  • 49. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res, 2004; 36(1): 1-9.
  • 50. Sandler S, Andersson AK, Barbu A, Hellerstrom C, Holstad M, Karlsson E, Sandberg JO, Strandell E, Saldeen J, Sternesjo J, Tillmar L, Eizirik DL, Flodström M, Welsh N. Novel experimental strategies to prevent the development of type 1 diabetes mellitus. Ups J Med Sci, 2000; 105(2): 17-34.
  • 51. Sartori C, Dessen P, Mathieu C, Monney A, Bloch J, Nicod P, Scherrer U, Duplain H. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology, 2009; 150(12): 5311-5317.
  • 52. Saxena AK, Srivastava P, Kale RK, Baquer NZ. Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochem Pharmacol, 1993; 45(3): 539-542.
  • 53. Shewade Y, Tirth S, Bhonde RR. Pancreatic islet-cell viability, functionality and oxidative status remain unaffected at pharmacological concentrations of commonly used antibiotics in vitro. J Biosci, 2001; 26(3): 349-355.
  • 54. Sudnikovich EJ, Maksimchik YZ, Zabrodskaya SV, Kubyshin VL, Lapshina EA, Bryszewska M, Reiter RJ, Zavodnik IB. Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats. Eur J Pharmacol, 2007; 569(3): 180-187.
  • 55. Sun H, Wang X, Chen J, Song K, Gusdon AM, Li L, Bu L, Qu S. Melatonin improves non-alcoholic fatty liver disease via MAPK-JNK/P38 signaling in high-fat-diet-induced obese mice. Lipids Health Dis, 2016; 15: 202.
  • 56. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?. J Pineal Res, 2007; 42: 28-42.
  • 57. Tüzün S, Girgin FK, Sözmen EY, Menteş G, Ersöz B. Antioxidant status in experimental type 2 diabetes mellitus: effects of glibenclamide and glipizide on various rat tissues. Exp Toxicol Pathol, 1999; 51(4-5): 436-441.
  • 58. Willems D, Dorchy H, Dufrasne D. Serum antioxidant status and oxidized LDL in well-controlled young type 1 diabetic patients with and without subclinical complications. Atherosclerosis, 1998; 137: 61-64.
  • 59. Winiarska K, Fraczyk T, Malinska D, Drozak J, Bryla J. Melatonin attenuates diabetes-induced oxidative stress in rabbits. J Pineal Res, 2006; 40(2): 168-176.
  • 60. Wolf SP, Dean RT. Glucose autoxidation and protein modification. The potential role of “autoxidative glycosylation” in diabetes. Biochem J, 1987; 245(1): 243-250.
  • 61. Yavuz O, Cam M, Bukan N, Guven A, Silan F. Protective effect of melatonin on β-cell damage in streptozotocin-induced diabetes in rats. Acta Histochem, 2003; 105(3): 261-266.
  • 62. Young IS, Tate S, Lightbody JH, McMaster D, Trimble ER. The effects of desferrioxamine and ascorbate on oxidative stress in the streptozotocin diabetic rat. Free Radic Biol Med, 1995; 18(5): 833-840.

Effects of Melatonin on Some Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats

Yıl 2019, , 217 - 222, 15.09.2019
https://doi.org/10.15314/tsed.560865

Öz

In this study, it was aimed to determine the
effects of melatonin application in experimentally induced diabetes. For this
purpose, thirty two adult male Wistar Albino rats were used. Animals in control
group were not any treatment. Melatonin group animals received 50 mg/kg
melatonin intraperitoneally in daily for eight weeks. Diabetes was induced by
subcutaneous injections of streptozotocin at dose of 40 mg/kg for two days as a
single dose per day in diabetes group animals. Animals in Diabetes+Melatonin
group were made diabetic by streptozotocin
in the same way and then these animals received 50 mg/kg melatonin
intraperitoneally in daily for eight weeks.
In blood
samples taken from all animals, insulin, glucose, HbA1c, MDA,
GSH, SOD were determined. The insulin level in diabetes
group was lower than control group, while blood glucose level was higher
(p<0.05). Melatonin treatment to diabetic animals resulted in significantly
differences in these parameters compared to diabetes group (p<0.05). HbA1c
in diabetes group was higher than control group (p<0.05). Melatonin
application to diabetic animals significantly decreased HbA1c compared to diabetes
group (p<0.05). In diabetes group, GSH and SOD levels were found to be lower
than control group, whereas MDA level were high (p<0.05). The changes in GSH
and SOD levels with melatonin application to diabetic animals were not
important compared to diabetes group, while MDA level was significantly reduced
(p<0.05). As a result, we concluded that the melatonin treatment to
experimentally induced diabetic rats obviously improved the some negative
changes in metabolic parameters resulting from diabetes.

Kaynakça

  • 1. Aguirre F, Martin I, Grinspon D, Ruiz M, Hager A, de Paoli T, Ihlo J, Farach HA, Poole CP. Oxidative damage, plasma antioxidant capacity and glucemic control in elderly NIDDM patients-Possible implications for diabetic atherosclerosis. Free Radic Biol Med, 1998; 24(4): 580-585.
  • 2. Aksoy N, Vural H, Sabuncu T, Aksoy S. Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem Funct, 2003; 21(2): 121-125.
  • 3. Allegra M, Reiter RJ, Tan DX, Gentile C, Tesoriere L, Livrea MA. The chemistry of melatonin's interaction with reactive species. J Pineal Res, 2003; 34(1): 1-10.
  • 4. Ashour M, Salem S, Hassaneen H, El-Gadban H, Elwan N, Awad A, Basu TK. Antioxidant status and insulin-dependent diabetes mellitus (IDDM). J Clin Biochem Nutr, 1999; 26(2): 99-107.
  • 5. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes, 1991; 40(4): 405-412.
  • 6. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes, 1999; 48(1): 1-9.
  • 7. Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat JH, Carlberg C. Pineal gland hormone melatonin binds and activates an orphan of nucleur receptor superfamily. J Biol Chem, 1994; 269(46): 28531-28534.
  • 8. Bojunga J, Dresar-Mayert B, Usadel KH, Kusterer K, Zeuzem S. Antioxidative treatment reverses imbalances of nitric oxide synthase isoform expression and attenuates tissue-cGMP activation in diabetic rats. Biochem Biophys Res Commun, 2004; 316(3): 771-780.
  • 9. Brzezinski A. Melatonin in humans. N Engl J Med, 1997; 336(3): 186-195.
  • 10. Ceriello A. Oxidative stress and glycemic regulation. Metabolism, 2000; 49(2): 27-29.
  • 11. Ceriello A, Bortolotti N, Crescentini A, Motz E, Lizzio S, Russo A, Ezsol Z, Tonutti L, Taboga C. Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur J Clin Invest, 1998; 28: 329-333.
  • 12. Chang KC, Chung SY, Chong WS, Suh JS, Kim SH, Noh HK, Seong BW, Ko HJ, Chun KW. Possible superoxide radical-induced alteration of vascular reactivity in aortas from streptozotocin-treated rats. J Pharmacol Exp Ther, 1993; 266(2): 992-1000.
  • 13. Derlacz RA, Poplawski P, Napierala M, Jagielski AK, Bryla J. Melatonin-induced modulation of glucose metabolism in primary cultures of rabbit kidney-cortex tubules. J Pineal Res, 2005; 38(3): 164-169.
  • 14. Donder E, Baydas G, Sokmen S, Ercel E, Yalniz M, Dogan H, Bahçeoğlu IH. Investigation of antioxidant and glucometabolic effects of melatonin in experimental diabetes mellitus. Biomed Res, 1999; 10(2): 127-32.
  • 15. Espino J, Pariente JA, Rodríguez AB. Role of melatonin on diabetes-related metabolic disorders. World J Diabetes, 2011; 2(6): 82-91.
  • 16. Feillet C, Roche B, Tauveron I, Bayle D, Rock E, Borel P, Rayssiguier Y, Thieblot P, Mazur A. Susceptibility to oxidation and physicochemical properties of LDL in insulin-dependent diabetics. Atherosclerosis, 1998; 136: 405-407.
  • 17. Ha E, Yim SV, Chung JH, Yoon KS, Kang I, Cho YH, Baik HH. Melatonin stimulates glucose transport via insulin receptor substrate-1/phosphatidylinositol 3-kinase pathway in C2C12 murine skeletal muscle cells. J Pineal Res, 2006; 41(1): 67-72.
  • 18. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: An overview. Meth Enzymol, 1990; 186: 1-85.
  • 19. Kataoka S, Satoh J, Fujiya H, Toyota T, Suzuki R, Itoh K, Kumagai K. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes, 1983; 32(3): 247-253.
  • 20. Kedziora-Kornatowska KZ, Luciak M, Paszkowski J. Lipid peroxidation and activities of antioxidant enzymes in the diabetic kidney: effect of treatment with angiotensin convertase inhibitors. IUBMB Life, 2000; 49(4): 303-307.
  • 21. Kemp DM, Ubeda M, Habener JF. Identification and functional characterization of melatonin Mel 1a receptors in pancreatic beta cells: potential role in incretin-mediated cell function by sensitization of cAMP signaling. Mol Cell Endocrinol, 2002; 191(2): 157-166.
  • 22. Klepac N, Rudeš Z, Klepac R. Effects of melatonin on plasma oxidative stress in rats with streptozotocin induced diabetes. Biomed Pharm, 2005; 60(1): 32-35.
  • 23. Laight DW, Carrier MJ, Anggard EE. Antioxidants, diabetes and endothelial dysfunction. Cardiovasc Res, 2000; 47: 457-464.
  • 24. Legros C, Devavry S, Caignard S, Tessier C, Delagrange P, Ouvry C, Boutin JA, Nosjean O. Melatonin MT(1) and MT(2) receptors display different molecular pharmacologies only in the G-protein coupled state. Br J Pharmacol, 2014; 171(1): 186-201.
  • 25. Like AA, Rossini AA, Guberski DL, Appel MC, Williams RM. Spontaneous diabetes mellitus: Reversal and prevention in the BB/W rat with antiserum to rat lymphocytes. Science, 1979; 206(4425): 1421-1423.
  • 26. Lo CC, Lin SH, Chang JS, Chien YW. Effects of melatonin on glucose homeostasis, antioxidant ability, and adipokine secretion in ICR mice with NA/STZ-induced hyperglycemia. Nutrients, 2017; 9(11): 1187.
  • 27. MacKenzie RS, Melan MA, Passey DK, Witt-Enderby PA. Dual coupling of MT(1) and MT(2) melatonin receptors to cyclic AMP and phosphoinositide signal transduction cascades and their regulation following melatonin exposure. Biochem Pharmacol, 2002; 63(4): 587-595.
  • 28. Makimattila S, Liu ML, Vakkilainen J, Schlenzka A, Lahdenperä S, Syvänne M, Mäntysaari M, Summanen P, Bergholm R, Taskinen MR, Yki-Järvinen H. Impaired endothelium-dependent vasodilation in type 2 diabetes. Relation to LDL size, oxidized LDL, and antioxidants. Diabetes Care, 1999; 22(6): 973-981.
  • 29. Malaisse WJ. Alloxan toxicity to pancreatic B-cells. A new hypothesis. Biochem Pharmacol, 1982; 31(22): 3527-3534.
  • 30. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol, 2003; 17(1): 24-38.
  • 31. Maxwell SRJ, Thomason H, Sandler D, LeGuen C, Baxter MA, Thorpe GHG, Jones AF, Barnett AH. Poor glycaemic control is associated with reduced serum free radical scavenging (antioxidant) activity in Non-Insulin-Dependent Diabetes Mellitus. Ann Clin Biochem, 1997; 34(6): 638-644.
  • 32. McLennan SV, Heffernan S, Wright L, Rae C, Fisher E, Yue DK, Turtle JR. Changes in hepatic glutathione metabolism in diabetes. Diabetes, 1991; 40(3): 344-348.
  • 33. Mohammed A, Adelaiye AB, Bakari AG, Mabrouk MA. Anti-diabetic and some haematological effects of ethylacetate and n-butanol fractions of Ganoderma lucidum aqueous extract in alloxan-induced diabetic wistar rats. Int J Med Medical Sci, 2009; 1(12): 530-535.
  • 34. Mohan IK, Das UN. Oxidant stress, antioxidants and nitric oxide in non-insulin dependent diabetes mellitus. Med Sci Res, 1997; 25: 55-57.
  • 35. Montilla PL, Vargas JF, Tlinez IF, Muñoz de Agueda MC, Valdelvira ME, Cabrera ES. Oxidative stress in diabetic rats induced by streptozotocin: Protective effects of melatonin. J Pineal Res, 1998; 25(2): 94-100.
  • 36. Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine, 2005; 27: 131-136.
  • 37. Paik SG, Blue ML, Fleischer N, Shin S. Diabetes susceptibility of BALB/cBOM mice treated with streptozotocin. Inhibition by lethal irradiation and restoration by splenic lymphocytes. Diabetes, 1982; 31(9): 808-815.
  • 38. Peschke E. Melatonin, endocrine pancreas and diabetes. J Pineal Res, 2008; 44(1): 26-40.
  • 39. Peschke E, Bahr I, Mühlbauer E. Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int J Mol Sci, 2013; 14(4): 6981-7015.
  • 40. Peschke E, Fauteck JD, Musshoff U, Schmidt F, Beckmann A, Peschke D. Evidence for a melatonin receptor within pancreatic islets of neonate rats: functional, autoradiographic, and molecular investigations. J Pineal Res, 2000; 28: 156-164.
  • 41. Picinato MC, Haber EP, Cipolla-Neto J, Curi R, de Oliveira Carvalho CR, Carpinelli AR. Melatonin inhibits insulin secretion and decreases PKA levels without interfering with glucose metabolism in rat pancreatic islets. J Pineal Res, 2002; 33: 156-160.
  • 42. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother, 2005; 59: 365-373.
  • 43. Reiter R, Tang L, Garcia JJ, Munoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci, 1997; 60(25): 2255-2271.
  • 44. Reiter RJ. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J, 1995; 9(7): 526-533.
  • 45. Reiter RJ. Melatonin: lowering the high price of free radicals. News Physiol Sci, 2000; 15: 246-250.
  • 46. Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys, 2001; 34(2): 237-256.
  • 47. Reunanen A, Knekt P, Aaran RK, Aromaa A. Serum antioxidants and risk of non-insulin dependent diabetes mellitus. Eur J Clin Nutr, 1998; 52: 89-93.
  • 48. Robertson RP. Chronic oxidative stress: a central mechanism for glucose toxicity in pancreatic islet beta cell in diabetes. J Biol Chem, 2004; 279(41): 42351-42354.
  • 49. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res, 2004; 36(1): 1-9.
  • 50. Sandler S, Andersson AK, Barbu A, Hellerstrom C, Holstad M, Karlsson E, Sandberg JO, Strandell E, Saldeen J, Sternesjo J, Tillmar L, Eizirik DL, Flodström M, Welsh N. Novel experimental strategies to prevent the development of type 1 diabetes mellitus. Ups J Med Sci, 2000; 105(2): 17-34.
  • 51. Sartori C, Dessen P, Mathieu C, Monney A, Bloch J, Nicod P, Scherrer U, Duplain H. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology, 2009; 150(12): 5311-5317.
  • 52. Saxena AK, Srivastava P, Kale RK, Baquer NZ. Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochem Pharmacol, 1993; 45(3): 539-542.
  • 53. Shewade Y, Tirth S, Bhonde RR. Pancreatic islet-cell viability, functionality and oxidative status remain unaffected at pharmacological concentrations of commonly used antibiotics in vitro. J Biosci, 2001; 26(3): 349-355.
  • 54. Sudnikovich EJ, Maksimchik YZ, Zabrodskaya SV, Kubyshin VL, Lapshina EA, Bryszewska M, Reiter RJ, Zavodnik IB. Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats. Eur J Pharmacol, 2007; 569(3): 180-187.
  • 55. Sun H, Wang X, Chen J, Song K, Gusdon AM, Li L, Bu L, Qu S. Melatonin improves non-alcoholic fatty liver disease via MAPK-JNK/P38 signaling in high-fat-diet-induced obese mice. Lipids Health Dis, 2016; 15: 202.
  • 56. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?. J Pineal Res, 2007; 42: 28-42.
  • 57. Tüzün S, Girgin FK, Sözmen EY, Menteş G, Ersöz B. Antioxidant status in experimental type 2 diabetes mellitus: effects of glibenclamide and glipizide on various rat tissues. Exp Toxicol Pathol, 1999; 51(4-5): 436-441.
  • 58. Willems D, Dorchy H, Dufrasne D. Serum antioxidant status and oxidized LDL in well-controlled young type 1 diabetic patients with and without subclinical complications. Atherosclerosis, 1998; 137: 61-64.
  • 59. Winiarska K, Fraczyk T, Malinska D, Drozak J, Bryla J. Melatonin attenuates diabetes-induced oxidative stress in rabbits. J Pineal Res, 2006; 40(2): 168-176.
  • 60. Wolf SP, Dean RT. Glucose autoxidation and protein modification. The potential role of “autoxidative glycosylation” in diabetes. Biochem J, 1987; 245(1): 243-250.
  • 61. Yavuz O, Cam M, Bukan N, Guven A, Silan F. Protective effect of melatonin on β-cell damage in streptozotocin-induced diabetes in rats. Acta Histochem, 2003; 105(3): 261-266.
  • 62. Young IS, Tate S, Lightbody JH, McMaster D, Trimble ER. The effects of desferrioxamine and ascorbate on oxidative stress in the streptozotocin diabetic rat. Free Radic Biol Med, 1995; 18(5): 833-840.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Spor Hekimliği
Bölüm Makeleler
Yazarlar

Deniz Uluışık 0000-0003-1462-0836

Ercan Keskin 0000-0003-3839-0414

Durmuş Hatipoğlu Bu kişi benim 0000-0003-3790-7821

Yayımlanma Tarihi 15 Eylül 2019
Kabul Tarihi 8 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Uluışık, D., Keskin, E., & Hatipoğlu, D. (2019). Effects of Melatonin on Some Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats. Turkish Journal of Sport and Exercise, 21(2), 217-222. https://doi.org/10.15314/tsed.560865
AMA Uluışık D, Keskin E, Hatipoğlu D. Effects of Melatonin on Some Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats. Turk J Sport Exe. Eylül 2019;21(2):217-222. doi:10.15314/tsed.560865
Chicago Uluışık, Deniz, Ercan Keskin, ve Durmuş Hatipoğlu. “Effects of Melatonin on Some Antioxidant Enzymes in Streptozotocin-Induced Diabetic Rats”. Turkish Journal of Sport and Exercise 21, sy. 2 (Eylül 2019): 217-22. https://doi.org/10.15314/tsed.560865.
EndNote Uluışık D, Keskin E, Hatipoğlu D (01 Eylül 2019) Effects of Melatonin on Some Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats. Turkish Journal of Sport and Exercise 21 2 217–222.
IEEE D. Uluışık, E. Keskin, ve D. Hatipoğlu, “Effects of Melatonin on Some Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats”, Turk J Sport Exe, c. 21, sy. 2, ss. 217–222, 2019, doi: 10.15314/tsed.560865.
ISNAD Uluışık, Deniz vd. “Effects of Melatonin on Some Antioxidant Enzymes in Streptozotocin-Induced Diabetic Rats”. Turkish Journal of Sport and Exercise 21/2 (Eylül 2019), 217-222. https://doi.org/10.15314/tsed.560865.
JAMA Uluışık D, Keskin E, Hatipoğlu D. Effects of Melatonin on Some Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats. Turk J Sport Exe. 2019;21:217–222.
MLA Uluışık, Deniz vd. “Effects of Melatonin on Some Antioxidant Enzymes in Streptozotocin-Induced Diabetic Rats”. Turkish Journal of Sport and Exercise, c. 21, sy. 2, 2019, ss. 217-22, doi:10.15314/tsed.560865.
Vancouver Uluışık D, Keskin E, Hatipoğlu D. Effects of Melatonin on Some Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats. Turk J Sport Exe. 2019;21(2):217-22.
Türk Spor ve Egzersiz Dergisi (TJSE) Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.