Araştırma Makalesi
BibTex RIS Kaynak Göster

Phytochemical Content Analysis of Different Lavandula Officinalis Extracts by LC-ESI-MS/MS and In Silico Molecular Docking Studies

Yıl 2024, Cilt: 5 Sayı: 1, 12 - 22, 22.05.2024

Öz

Lavandula officinalis (lavender) is an evergreen, shrub-like, flowering, and perennial plant species that is generally distributed in the Mediterranean region. Lavender is rich in secondary metabolites such as essential oil, tannins, anthocyanins, minerals, saponins, flavonoids, and phenolic acids. Secondary metabolites in plants show many biological activities such as antioxidant, antimutagenic, anticarcinogenic, anti-inflammatory, anticancer, antiproliferative, and antimicrobial. In this study, the lavender plant of aboveground part was extracted with 5 different solvents (hexane, chloroform, ethyl acetate, methanol, and water). The resulting extraction was analyzed for phytochemical content by LC-ESI-MS/MS. According to the analysis results, it was seen that the main component of 5 different extracts was the coumarin compound. The interactions of the coumarin compound, determined as the main component of lavender, which is known to have antibacterial and anticancer activity in the literature, with anticancer (topoisomerase II, alpha) and antibacterial (glucosamine-6-phosphate) enzymes were calculated theoretically by the molecular docking (MolDock) method. As a result, the moldock score (82.55, 60.26) and binding energies (5.9 kcal/mol, 6.2 kcal/mol) from the interactions of the coumarin compound with topoisomerase II, alpha, and glucosamine-6-phosphate enzymes were determined, respectively. Thus, this study may provide insight into in vitro studies on the activity of coumarins against these enzymes.

Kaynakça

  • 1. Pagare S, Bhatia M, Tripathi N, Bansal YK. Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy. 2015;9:293-304.
  • 2. Agostini-Costa T, Vieira R, Bizzo H, Silveira D, Gimenes M. Secondary Metabolites. 2012.
  • 3. Savithramma N, Rao M, Ankanna S. Screening of Medicinal Plants for Secondary Metabolites. Middle-East J Sci Res. 2011;8.
  • 4. Ahmad Ganaie H. Chapter 1 - Review of the active principles of medicinal and aromatic plants and their disease fighting properties. In: Aftab T, Hakeem KR, editors. Medicinal and Aromatic Plants: Academic Press; 2021. p. 1-36.
  • 5. Lubbe A, Verpoorte R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Industrial Crops and Products. 2011;34(1):785-801.
  • 6. Hajhashemi V, Ghannadi A, Sharif B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol. 2003;89(1):67-71.
  • 7. Erland L, Mahmoud S. Lavender (Lavandula angustifolia) Oils. 2015. p. 501-8.
  • 8. López V, Nielsen B, Solas M, Ramírez MJ, Jäger AK. Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia) Essential Oil on Central Nervous System Targets. Front Pharmacol. 2017;8:280.
  • 9. Cardia GFE, Silva-Filho SE, Silva EL, Uchida NS, Cavalcante HAO, Cassarotti LL, et al. Effect of Lavender (Lavandula angustifolia) Essential Oil on Acute Inflammatory Response. Evid Based Complement Alternat Med. 2018;2018:1413940.
  • 10. Yadikar N, Bobakulov K, Eshbakova K, Aisa H. Phenolic Compounds from Lavandula angustifolia. Chemistry of Natural Compounds. 2017;53:1-3.
  • 11. Soheili M, Salami M. Lavandula angustifolia biological characteristics: An in vitro study. J Cell Physiol. 2019;234(9):16424-30.
  • 12. Winum JY, Scozzafava A, Montero JL, Supuran CT. Therapeutic potential of sulfamides as enzyme inhibitors. Med Res Rev. 2006;26(6):767-92.
  • 13. Başar Y, Demirtaş İ, Yenigün S, İpek Y, Özen T, Behçet L. Molecular docking, molecular dynamics, MM/PBSA approaches and bioactivity studies of nepetanudoside B isolated from endemic Nepeta aristata. J Biomol Struct Dyn. 2024:1-14.
  • 14. Copeland RA, Harpel MR, Tummino PJ. Targeting enzyme inhibitors in drug discovery. Expert Opin Ther Targets. 2007;11(7):967-78.
  • 15. Yenigün S, Başar Y, İpek Y, Behçet L, Özen T, Demirtaş İ. Determination of antioxidant, DNA protection, enzyme inhibition potential and molecular docking studies of a biomarker ursolic acid in Nepeta species. J Biomol Struct Dyn. 2023:1-18.
  • 16. De Azevedo WF, Jr. MolDock applied to structure-based virtual screening. Curr Drug Targets. 2010;11(3):327-34.
  • 17. Almeida D, Gerhard R, Leitão D, Davilla C, Damasceno M, Schmitt F. Topoisomerase II-alfa gene as a predictive marker of response to anthracyclines in breast cancer. Pathology - Research and Practice. 2014;210(10):675-9.
  • 18. Byl JA, Cline SD, Utsugi T, Kobunai T, Yamada Y, Osheroff N. DNA topoisomerase II as the target for the anticancer drug TOP-53: mechanistic basis for drug action. Biochemistry. 2001;40(3):712-8.
  • 19. Chmara H, Milewski S, Andruszkiewicz R, Mignini F, Borowski E. Antibacterial action of dipeptides containing an inhibitor of glucosamine-6-phosphate isomerase. Microbiology (Reading). 1998;144 ( Pt 5):1349-58.
  • 20. İpek Y, Başar Y, Yenigün S, Behçet L, Özen T, Demirtas I. In vitro bioactivities and in silico enzyme interactions of abietatrien-3β-ol by bio-guided isolation from Nepeta italica subsp. italica. Journal of Biomolecular Structure and Dynamics. 2024; 42:1.14.
  • 21. Erenler R, Atalar MN, Yıldız İ, Geçer EN, Yıldırım A, Demirtas İ, Alma MH. Quantitative analysis of bioactive compounds by LC-MS/MS from Inula graveolens. Bütünleyici ve Anadolu Tıbbı Dergisi. 2023;4(3):3-10.
  • 22. Başar Y, Yenigün S, İpek Y, Behçet L, Gül F, Özen T, Demirtaş İ. DNA protection, molecular docking, enzyme inhibition and enzyme kinetic studies of 1,5,9-epideoxyloganic acid isolated from Nepeta aristata with bio-guided fractionation. J Biomol Struct Dyn. 2023:42:1-14.
  • 23. Başar Y, Yenigün S, Gül F, Ozen T, Demirtas İ, Alma MH, Temel S. Phytochemical profiling, molecular docking and ADMET prediction of crude extract of Atriplex nitens Schkuhr for the screening of antioxidant and urease inhibitory. International Journal of Chemistry and Technology. 2024;8(1):62-71.
  • 24. Bubols GB, Vianna Dda R, Medina-Remon A, von Poser G, Lamuela-Raventos RM, Eifler-Lima VL, Garcia SC. The antioxidant activity of coumarins and flavonoids. Mini Rev Med Chem. 2013;13(3):318-34.
  • 25. Qin H-L, Zhang Z-W, Ravindar L, Rakesh KP. Antibacterial activities with the structure-activity relationship of coumarin derivatives. European Journal of Medicinal Chemistry. 2020;207:112832.

Farklı Lavandula Officinalis Ekstraktlarının LC-ESI-MS/MS ile Fitokimyasal İçerik Analizi ve İn Siliko Moleküler Yerleştirme Çalışmaları

Yıl 2024, Cilt: 5 Sayı: 1, 12 - 22, 22.05.2024

Öz

Lavandula officinalis (lavanta), genel olarak Akdeniz bölgesinde yayılış gösteren, yapraklarını dökmeyen çalı şeklinde çiçekli çok yıllık bir bitki türüdür. Lavanta, uçucu yağ, tanenler, antosiyaninler, mineraller, saponinler, flavonoidler ve fenolik asitler gibi sekendor metebolitler açısından zengin içeriğe sahiptir. Bitkilerdeki sekonder metebolitler, antioksidan, antimutajenik, antikarsinojenik, antiinflamatuar, antikanser, antiproliferatif ve antimikrobiyal gibi birçok biyolojik aktivite göstermektedir. Çalışmamızda lavanta bitkisinin 5 farklı çözücü (hekzan, kloroform, etil asetat, metanol ve su) ile ekstrakste edilmiştir. Elde edilen ekstraksiyon LC-ESI-MS/MS ile fitokimyasal içerik analizi yapılmıştır. Analiz sonucuna göre 5 farklı ekstrkta ana bileşenin kumarin olduğu görüldü. Literatürde antibakteriyel ve antianser aktiviteye sahip olduğu bilinen lavantadaki ana bileşen olarak belirlenen kumarin bileşiğinin antikanser (topoizomeraz II, alfa) ve antibakteriyel (glukozamin-6-fosfat) enzimlerle etkileşimleri moleküler doking metodu ile teorik olarak hesaplandı. Sonuç olarak kumarin bileşiğinin, topoizomeraz II, alfa ve glukozamin-6-fosfat enzimleriyle etkileşimlerinin moldock skoru (82.55, 60.26) ve bağlanma enerjileri (5.9 kcal/mol, 6.2 kcal/mol) sırasıyla belirlendi. Böylece bu çalışma ile kumarin bileşiğinin bu enzimlere karşı aktivitesinin in vitro çalışmalara fikir verebileceği düşünülmektedir.

Kaynakça

  • 1. Pagare S, Bhatia M, Tripathi N, Bansal YK. Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy. 2015;9:293-304.
  • 2. Agostini-Costa T, Vieira R, Bizzo H, Silveira D, Gimenes M. Secondary Metabolites. 2012.
  • 3. Savithramma N, Rao M, Ankanna S. Screening of Medicinal Plants for Secondary Metabolites. Middle-East J Sci Res. 2011;8.
  • 4. Ahmad Ganaie H. Chapter 1 - Review of the active principles of medicinal and aromatic plants and their disease fighting properties. In: Aftab T, Hakeem KR, editors. Medicinal and Aromatic Plants: Academic Press; 2021. p. 1-36.
  • 5. Lubbe A, Verpoorte R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Industrial Crops and Products. 2011;34(1):785-801.
  • 6. Hajhashemi V, Ghannadi A, Sharif B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol. 2003;89(1):67-71.
  • 7. Erland L, Mahmoud S. Lavender (Lavandula angustifolia) Oils. 2015. p. 501-8.
  • 8. López V, Nielsen B, Solas M, Ramírez MJ, Jäger AK. Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia) Essential Oil on Central Nervous System Targets. Front Pharmacol. 2017;8:280.
  • 9. Cardia GFE, Silva-Filho SE, Silva EL, Uchida NS, Cavalcante HAO, Cassarotti LL, et al. Effect of Lavender (Lavandula angustifolia) Essential Oil on Acute Inflammatory Response. Evid Based Complement Alternat Med. 2018;2018:1413940.
  • 10. Yadikar N, Bobakulov K, Eshbakova K, Aisa H. Phenolic Compounds from Lavandula angustifolia. Chemistry of Natural Compounds. 2017;53:1-3.
  • 11. Soheili M, Salami M. Lavandula angustifolia biological characteristics: An in vitro study. J Cell Physiol. 2019;234(9):16424-30.
  • 12. Winum JY, Scozzafava A, Montero JL, Supuran CT. Therapeutic potential of sulfamides as enzyme inhibitors. Med Res Rev. 2006;26(6):767-92.
  • 13. Başar Y, Demirtaş İ, Yenigün S, İpek Y, Özen T, Behçet L. Molecular docking, molecular dynamics, MM/PBSA approaches and bioactivity studies of nepetanudoside B isolated from endemic Nepeta aristata. J Biomol Struct Dyn. 2024:1-14.
  • 14. Copeland RA, Harpel MR, Tummino PJ. Targeting enzyme inhibitors in drug discovery. Expert Opin Ther Targets. 2007;11(7):967-78.
  • 15. Yenigün S, Başar Y, İpek Y, Behçet L, Özen T, Demirtaş İ. Determination of antioxidant, DNA protection, enzyme inhibition potential and molecular docking studies of a biomarker ursolic acid in Nepeta species. J Biomol Struct Dyn. 2023:1-18.
  • 16. De Azevedo WF, Jr. MolDock applied to structure-based virtual screening. Curr Drug Targets. 2010;11(3):327-34.
  • 17. Almeida D, Gerhard R, Leitão D, Davilla C, Damasceno M, Schmitt F. Topoisomerase II-alfa gene as a predictive marker of response to anthracyclines in breast cancer. Pathology - Research and Practice. 2014;210(10):675-9.
  • 18. Byl JA, Cline SD, Utsugi T, Kobunai T, Yamada Y, Osheroff N. DNA topoisomerase II as the target for the anticancer drug TOP-53: mechanistic basis for drug action. Biochemistry. 2001;40(3):712-8.
  • 19. Chmara H, Milewski S, Andruszkiewicz R, Mignini F, Borowski E. Antibacterial action of dipeptides containing an inhibitor of glucosamine-6-phosphate isomerase. Microbiology (Reading). 1998;144 ( Pt 5):1349-58.
  • 20. İpek Y, Başar Y, Yenigün S, Behçet L, Özen T, Demirtas I. In vitro bioactivities and in silico enzyme interactions of abietatrien-3β-ol by bio-guided isolation from Nepeta italica subsp. italica. Journal of Biomolecular Structure and Dynamics. 2024; 42:1.14.
  • 21. Erenler R, Atalar MN, Yıldız İ, Geçer EN, Yıldırım A, Demirtas İ, Alma MH. Quantitative analysis of bioactive compounds by LC-MS/MS from Inula graveolens. Bütünleyici ve Anadolu Tıbbı Dergisi. 2023;4(3):3-10.
  • 22. Başar Y, Yenigün S, İpek Y, Behçet L, Gül F, Özen T, Demirtaş İ. DNA protection, molecular docking, enzyme inhibition and enzyme kinetic studies of 1,5,9-epideoxyloganic acid isolated from Nepeta aristata with bio-guided fractionation. J Biomol Struct Dyn. 2023:42:1-14.
  • 23. Başar Y, Yenigün S, Gül F, Ozen T, Demirtas İ, Alma MH, Temel S. Phytochemical profiling, molecular docking and ADMET prediction of crude extract of Atriplex nitens Schkuhr for the screening of antioxidant and urease inhibitory. International Journal of Chemistry and Technology. 2024;8(1):62-71.
  • 24. Bubols GB, Vianna Dda R, Medina-Remon A, von Poser G, Lamuela-Raventos RM, Eifler-Lima VL, Garcia SC. The antioxidant activity of coumarins and flavonoids. Mini Rev Med Chem. 2013;13(3):318-34.
  • 25. Qin H-L, Zhang Z-W, Ravindar L, Rakesh KP. Antibacterial activities with the structure-activity relationship of coumarin derivatives. European Journal of Medicinal Chemistry. 2020;207:112832.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyokimyası, Doğal Ürünler ve Biyoaktif Bileşikler
Bölüm Araştırma Makalesi
Yazarlar

Yunus Başar 0000-0002-7785-3242

Musa Karadağ 0000-0003-2498-3403

Yayımlanma Tarihi 22 Mayıs 2024
Gönderilme Tarihi 1 Nisan 2024
Kabul Tarihi 30 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 1

Kaynak Göster

Vancouver Başar Y, Karadağ M. Phytochemical Content Analysis of Different Lavandula Officinalis Extracts by LC-ESI-MS/MS and In Silico Molecular Docking Studies. TUBİD. 2024;5(1):12-2.