Araştırma Makalesi
BibTex RIS Kaynak Göster

Prioritization of Flood Susceptibility within the Sub-Basin of the Dalaman Stream Basin Using Morphometric Analysis Methods

Yıl 2025, Cilt: 7 Sayı: 2, 68 - 84
https://doi.org/10.56130/tucbis.1807763

Öz

In recent years, systematic approaches incorporating Geographic Information Systems (GIS), remote sensing techniques, morphometric analyses, artificial intelligence methods, and the integration of statistical data have been used in sensitivity analyses of floods, which have increased in frequency and impact worldwide. In this study, flood susceptibility prioritization was modelled using different geostatistical methods based on the results of morphometric analyses conducted on the eight sub-basins that make up the Dalaman Stream Basin. First, the results of the morphometric analyses of the sub-basins were calculated using 15 different indices in terms of linear, areal and relief characteristics. The obtained morphometric data were then analysed using the Pearson Correlation coefficient. Using the quantitative data obtained, the Dalaman Stream Basin was analysed in terms of flood susceptibility level and prioritization using two different models: the flood ranking method and the Normalised Morphometric Flood Index (NMFI) method. The analysis results revealed that the sub-basins located in the upper reaches of the basin (basins 6, 7, and 8) have a higher flood susceptibility. According to the morphometric ranking method, three sub-basins have a high level of flood susceptibility, while five sub-basins have a high level of flood susceptibility according to the NFMI. The flood sensitivity results obtained from morphometric analyses using 23 flood data points previously recorded in the Dalaman Stream basin were compared. According to the comparison results, it was determined that 64% of past floods occurred in sub-basins 6, 7 and 8, which are particularly prioritized and have high flood susceptibility.

Kaynakça

  • Abdelgawad, A.G., Helal, E., Sobeih, M.F. Elsayed, H. (2024). Flood hazard mapping using a GIS-based morphometric analysis approach in arid regions, a case study in the Red Sea Region, Egypt. Appl Water Sci 14, 81 (2024). https://doi.org/10.1007/s13201-024-02130-5
  • Ahmed, A., Al Maliki, A., Hashim, B. vd., (2023). Flood susceptibility mapping utilizing the integration of geospatial and multivariate statistical analysis, Erbil area in Northern Iraq as a case study. Sci Rep 13, 11919 (2023). https://doi.org/10.1038/s41598-023-39290-4
  • Akbaş, A., Görüm, T., & Özdemir, H. (2025). Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması. Turkish Journal of Civil Engineering, 36(6). https://doi.org/10.18400/tjce.1618212
  • Akşit, S. (2025). Doğal Ortam Koşullarının Akarsuların Su Kalitesi Üzerine Etkileri: Yukarı Dalaman Çayı Havzası Örneği. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (70), 345-360. https://doi.org/10.30794/pausbed.1611955
  • AlRifai, M. H., Kafy, A. A., & Altuwaijri, H. A. (2025). Quantitative Assessment of Flood Risk Through Multi Parameter Morphometric Analysis and GeoAI: A GIS-Based Study of Wadi Ranuna Basin in Saudi Arabia. Water, 17(14), 2108. https://doi.org/10.3390/w17142108
  • Al-Ruzouq, R., Shanableh, A., Jena, R., Gibril, M., Hammouri, N., & Lamghari, F. (2024). Flood susceptibility mapping using a novel integration of multi-temporal sentinel-1 data and eXtreme deep learning model. Geoscience Frontiers, 15(3). https://doi.org/10.1016/j.gsf.2024.101780
  • Arora, A., Durga G, P., Pandey, M. Arabameri, A. (2025) Machine learning model optimization for flood susceptibility zonation over the Kosi megafan, Himalayan foreland basin, India. Sci Rep 15, 32757 (2025). https://doi.org/10.1038/s41598-025-07403-w
  • Arabameri, A. Saha, S. Mukherjee, K. Blaschke, T. Chen, W. Ngo, P.T.T. Band, S.S. (2020). Modeling Spatial Flood using Novel Ensemble Artificial Intelligence Approaches in Northern Iran. Remote Sens. 2020, 12, 3423. https://doi.org/10.3390/rs12203423
  • Avcı, V. & Sunkar, M. (2015). Giresun'da sel ve taşkın oluşumuna neden olan aksu çayı ve batlama deresi havzalarının morfometrik analizleri. İstanbul Üniv. Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 30, 91-119.
  • Bhattarai, Y., Duwal, S., Sharma, S., & Talchabhadelc, R. (2024). Leveraging machine learning and open-source spatial datasets to enhance flood susceptibility mapping in transboundary river basin. International Journal of Digital Earth, 17(1). https://doi.org/10.1080/17538947.2024.2313857
  • Bogale, A. (2021). Morphometric Analysis of a Drainage Basin Using Geographical Information System in Gilgel Abay Watershed, Lake Tana Basin, Upper Blue Nile Basin, Ethiopia. Applied Water Science, 11(122). https://doi.org/10.1007/s13201-021-01447-9
  • Chapi, K., Singh, V. P., Shirzadi, A., Shahabi, H., Bui, D. T., Pham, B. T., & Khosravi, K. (2017). A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling & Software, 95, 229-245. https://doi.org/10.1016/j.envsoft.2017.06.012
  • CRED. (2025). (Université catholique de Louvain (UCLouvain).) Eylül 19, 2025 tarihinde EM-DAT: The international disaster database: https://www.emdat.be/ adresinden alındı
  • Costache, R., Pham, Q.B., Sharifi, E., Linh, N.T.T., Abba, S.I., Vojtek, M., Vojtekov´a, J., Nhi, P.T.T., Khoi, D.N., (2020). Flash-flood susceptibility assessment using multicriteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sens. 12, 106. https://doi.org/10.3390/rs12010106.
  • Dahri, N., Yousfi, R., Bouamrane, A., Abida, H., Pham, Q.B. and Derdous, O. (2022). Comparison of analytic network process and artificial neural network models for flash flood susceptibility assessment, Journal of African Earth Sciences, Vol. 193, 104576, doi: 10.1016/j.jafrearsci.2022.104576.
  • Danacıoğlu, Ş., & Öz N., M. (2025). Tahtalı Barajı Havzasında bulanık mantık yöntemi ile taşkın risk analizi. Journal of Anatolian Geography, 2(1), s. 82-89.
  • Derakhshani, R., Zaresefat, M., Nikpeyman, V., GhasemiNejad, A., Shafieibafti, S., Rashidi, A., Nemati, M., & Raoof, A. (2023). Machine Learning-Based Assessment of Watershed Morphometry in Makran. Land, 12(4), 776. https://doi.org/10.3390/land12040776
  • Devlin, S. Susan J. Gnanadesikan, R. Kettenring J.R. (1975). Robust estimation and outlier detection with correlation coefficients. Biometrika. 62 (3): 531–545. https://doi.org/10.1093/biomet/62.3.531
  • Dutal, H. (2023). Using morphometric analysis for assessment of flash flood susceptibility in the Mediterranean region of Turkey. Environ Monit Assess 195, 582 (2023). https://doi.org/10.1007/s10661-023-11201-0
  • Elbaşı, E., & Özdemir, H. (2018). Marmara Denizi Akarsu Havzalarının Morfometrik Analizi. Journal of Geography(36), 63-84. http://dx.doi.org/10.26650/JGEOG418790
  • Erten, A & Gürbüz A., (2018). Dalaman Çayı Drenaj Havzasının Morfometrik İndisler Kullanarak Hidrolojik Özelliklerinin Belirlenmesi, VII. Uzaktan Algılama-CBS Sempozyumu (UZAL-CBS 2018), 18-21 Eylül 2018, Eskişehir
  • Esen, F. (2022). Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. International Journal of Geography and Geography Education (IGGE), 47, 233-257. http://dx.doi.org/10.32003/igge.1126933
  • Evans, I. S. (1972). General Geomorphometry, Derivatives of Altitude, and Descriptive Statistics. Spatial Analysis in Geomorphology, 9, 17–90.
  • Farhan, Y., Anbar, A., Al-Shaikh, N., Mousa, R., (2017). Prioritization of Semi-Arid Agricultural Watershed Using Morphometric and Principal Component Analysis, Remote Sensing, and GIS Techniques, the Zerqa River Watershed, Northern Jordan. Agric. Sci. 08, 113–148. https://doi.org/10.4236/as.2017.81009.
  • Ghasemlouni, R., & Utlu, M., (2021). Flood prioritization of basins based on geomorphometric properties using principal component analysis, morphometric analysis and Redvan’s priority methods: A case study of Hars¸it River basin, Journal of Hydrology 603 (2021) 127061, https://doi.org/10.1016/j.jhydrol.2021.127061
  • Gregory, K., & Walling, D. (2010). The Varıatıon Of Draınage Densıty Wıthın A Catchment. International Association of Scientific Hydrology, 13(2), s. 61-68. https://doi.org/10.1080/02626666809493583
  • Horton, R. E. (1945). Erosional Development Of Streams And Their Drainage Basins: Hydrophysical Approach To Quantitative Morphology. Bull Geologycal Soc Am 56, 275- 370.
  • Joy, M., Upaul, S., Fatema, K., & Amin, F. (2023). Application of GIS and remote sensing in morphometric analysis of river basin at the south-western part of great Ganges delta, Bangladesh Open Access. Hydrology Research, 54(6), s. 739-755. https://doi.org/10.2166/nh.2023.087
  • Karakoca, E., & Ünver, A. (2025). Analitik hiyerarşi süreci ve coğrafi bilgi sistemleri kullanarak Eşen Çayı Havzası’nda taşkın riski değerlendirmesi ve haritalandırılması. Geomatik, 10(1), 127-143. https://doi.org/10.29128/geomatik.1542251
  • Kaya M., Ç. (2022). Taşkın Duyarlılık Haritalarının Oluşturulmasında Kullanılan Yöntemler. Türk Uzaktan Algılama ve CBS Dergisi. https://doi.org/10.48123/rsgis.1129606
  • Keskin, M.E., Taylan, E.D., Aydın, T., (2015). Dalaman Çayı Akımlarının Yıllık Zaman Serileri İle Modellenmesi. VIII. Ulusal Hidroloji Kongresi, 573-581, Şanlıurfa.
  • Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering, 10(6), 362. Kollias, D. I., Bathrellos, G. D., Skilodimou, H. D., & Ahmad, M. N. (2025). Morphometric and morphotectonic parameters in flood studies and flood hazard assessment: A literature review. Zeitschrift für Geomorphologie. https://doi.org/10.1127/zfg/0834
  • Kuşçu, İ., & Özdemir, H. (2023). Taşkın duyarlılık analizinde kullanılan parametreler üzerine bir değerlendirme. Türk Coğrafya Dergisi (84), 67-83. https://dergipark.org.tr/tr/pub/tcd/issue/82331/1345962
  • Liu, J., Feng, S., Gu, X., Zhang, Y., Beck, H. E., Zhang, J., & Yan, S. (2022). Global changes in floods and their drivers. Journal of Hydrology, 614, 128553. https://doi.org/10.1016/j.jhydrol.2022.128553
  • Liu Q, Du M, Wang Y, Deng J, Yan W, Qin C, Liu M, Liu J (2024). Global, regional and national trends and impacts of natural floods, 1990-2022. Bull World Health Organ. 1;102(6):410-420. https://doi.org/10.2471/BLT.23.290243.
  • Luppichini, M., Capolongo, D., Scardino, G., Scicchitano, G., & Bini, M. (2025). Artificial Intelligence in Geomorphology: A Bibliometric Analysis of Trends, Techniques, and Global Research Patterns. Geosciences, 15(9), 331. https://doi.org/10.3390/geosciences15090331
  • Mahala, A., (2020). The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Appl. Water Sci. 10, 33. https://doi.org/10.1007/s13201-019-1118-2.
  • Mani, A., Kumari, M., & Badola, R. (2022). Morphometric analysis of Suswa River Basin using geospatial techniques. Engineering Proceedings, 27(1). https://doi.org/10.3390/ecsa-9-13225
  • Melton, M.A. (1957). An analysis of the relations among elements of climate, Surface properties and geomorphology, Project NR 389042, Tech. Rep. 11, Columbia University
  • Merz, B., Blöschl, G., Vorogushyn, S. Dottori, F., Aets, J., Bates, P., Bertola, M., vd., (2021) Causes, impacts and patterns of disastrous river floods. Nat Rev Earth Environ 2, 592–609 (2021). https://doi.org/10.1038/s43017-021-00195-3
  • Miller, V. C. (1953). A Quantitative Geomorphic Study Of Drainage Basin Characteristics İn The Clinch Mountain Area, Virginia And Tennessee, Technical Report no: 3, Department of Geology, Columbia University, New York, USA.
  • Mishra, A.K., & Rai, S.C., (2020). Geo-hydrological inferences through morphometric aspects of the Himalayan glacial-fed river: a case study of the Madhyamaheshwar River basin. Arab. J. Geosci. 13, 533. https://doi.org/10.1007/s12517-020-05571-9.
  • Mohammed, J. A., Yimam, Z. A., Addissu, S., Endris, A., Haile, B., Ali, A., Tsegaye, S., Shitu, K. & Mohammed Y., (2025) Identification and prioritization of flood-prone sub-watersheds using morphometric analysis and remote sensing in the Beshilo Sub-basin, Ethiopia, Geocarto International, 40:1, 2526503, https://doi.org/10.1080/10106049.2025.2526503
  • Nişancı, G. Ş., Cihangir, M. E., & Küçükönder, M. (2024). Türkiye’de Ana Akarsu Havzaları Ölçeğinde Morfometrik İndislerle Sel/Taşkın Arasındaki İlişkinin Değerlendirilmesi. Doğu Coğrafya Dergisi, 29(51), 13-40. https://doi.org/10.17295/ataunidcd.1461010
  • Obeidat, M., Awawdeh, M., & Al-Hantouli, F. (2021). Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. Journal of Flood Risk, 14(2). doi:https://doi.org/10.1111/jfr3.12711
  • Ocak, F., Bahadır, M., & Aylar, F. (2021). Bakacak Deresi Havzası’nın (Samsun) Coğrafi Analizi ve Taşkın Duyarlılığı. Mavi Atlas, 9(2), 61-81. https://doi.org/10.18795/gumusmaviatlas.981217 Özdemir, H. (2011). Havza Morfometrisi ve Taşkınlar. Fiziki Coğrafya Araştırmaları; Sistematik ve Bölgesel, Türk Coğrafya Kurumu Yayınları (5), s. 507-526.
  • Özdemir, H., & Akbaş, A. (2023). Is there a consistency in basin morphometry and hydrodynamic modelling results in terms of the flood generation potential of basins? A case study from the Ulus River Basin (Türkiye). Journal of Hydrology, 625:129926. https://doi.org/10.1016/j.jhydrol.2023.129926
  • Papaioannou, G., Vasiliades, L., Loukas, A., (2015). Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resour. Manag. 29, 399–418. https://doi.org/10.1007/s11269-014-0817-6.
  • Paul, A., (2025). Artificial neural networks for flood susceptibility analysis in Gangarampur sub-division of Dakshin Dinajpur, West Bengal, India. Frontiers in Engineering and Built Environment, 5 (1): 1–21. https://doi.org/10.1108/FEBE-09-2024-0061
  • Pike, R., Evans, I., Hengl, T. (2009). Geomorphometry: A Brief Guide. Geomorphometry: Concepts, Software, Applications (pp. 3-30), Amsterdam: Elsevier.
  • Rai, P.K., Singh, P., Mishra, V.N., Singh, A., Sajan, B., Shahi, A.P., (2020). Geospatial approach for quantitative drainage morphometric analysis of varuna river basin. India. J. Landsc. Ecol. Republic) 12, 1–25. https://doi.org/10.2478/jlecol-2019-0007.
  • Rajasekhar, M., Raju, G. S., & Raju, R. S. (2020). Morphometric analysis of the Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India, using geospatial technologies. Groundwater for Sustainable Development, 11, 100434.
  • Ratnam, N., Srivastava, Y., Venkateswara Rao, V., Amminedu, E., & Murthy, K. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis — Remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing, 33, s. 25-38. https://doi.org/10.1007/BF02989988
  • Saikh, N., & Mondal, P. (2023). GIS-based machine learning algorithm for flood susceptibility analysis in the Pagla river basin, Eastern India. Natural Hazards Research, 3(3), s. 420-436. doi:https://doi.org/10.1016/j.nhres.2023.05.004
  • Schumm, S. A. (1956). Evolution Of Drainage Systems And Slopes İn Badlands At Perth Amboy, New Jersey. Geological. Soc. Am. Bul. 67, 597-646.
  • Sen, D., & Das, S. (2025). Flood Susceptibility Assessment in the Teesta River Basin, India: An Advanced Geospatial Artificial Intelligence Approach Leveraging Spatial Data Augmentation. SN COMPUT. SCI. 6, 368 (2025). https://doi.org/10.1007/s42979-025-03836-2
  • Seth, S. M., Ramasastri K. S., Rao, V. N. (1998). Representative Basin Studies: Morphometric Analysis of Suddagedda Basin, Andhra Pradesh, National Institute of Hydrology Jal Vıgyan, 1-28.
  • Shekar, P. R. Mathew, A. Arun P. S., Gopi V. P. (2023). Sub-watershed prioritization using morphometric analysis, principal component analysis, hypsometric analysis, land use/land cover analysis, and machine learning approaches in the Peddavagu River Basin, India. Journal of Water and Climate Change 14 (7): 2055–2084. https://doi.org/10.2166/wcc.2023.221
  • Shekar, P., & Mathew, A. (2024). Morphometric analysis of watersheds: A comprehensive review of data sources, quality, and geospatial techniques. Watershed Ecology and the Environment, 6, s. 13-25. https://doi.org/10.1016/j.wsee.2023.12.001
  • Soomro, S., Wei, H., Boota, M. W., Soomro, N.-E., Faisal, M., Nazli, S., sarwari, S., Shi, X., Hu, C., Guo, J., & Li, Y. (2025). River basin urban flood resilience: A multi-dimensional framework for risk mitigation to adaptive management and ecosystem protection under changing climate. Ecological Informatics, 91, 103412. https://doi.org/10.1016/j.ecoinf.2025.103412
  • Strahler, A. N. (1952). Hypsometric (area-altitude) Analysis of Erosional Topography, Geological Society of America Bulletin 63, 1117-1142.
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Trans American GeophysicalUnion 38, 913-920.
  • Strahler, A. (1964). Quantitative Geomorphology of Drainage Basins and Channel Networks. In: Chow, V., Ed., Handbook of Applied Hydrology. New York.
  • Şenel, M. (2007). Likya naplarının özellikleri ve evrimi. Menderes Masifi Kolokyumu, Genişletilmiş Bildiri Özleri Kitabı, İzmir, 51-55.
  • Taşoğlu, E., Öztürk, M. Z. & Yazıcı, Ö. (2024). High resolution Köppen-Geiger climate zones of Türkiye. International Journal of Climatology, 44(14), 5248-5265. https://doi.org/10.1002/joc.8635
  • Tokgözlü, A., & Özkan, E. (2018). Taşkın Risk Haritalarında AHP Yönteminin Uygulanması: Aksu Çayı Havzası Örneği. Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi(44), 151-176.
  • Utlu, M., & Ekinci, D. (2015). Namnam Çayı Havzasının (Muğla) Uygulamalı Hidrografyası. Journal of Geography(30), 38-60.
  • Utlu, M., & Özdemir, H. (2018). Havza Morfometrik Özelliklerinin Taşkın Üretmedeki Rolü Biga Çayı Havzası Örneği. Journal of Geography(36), 49-62. https://doi.org/10.26650/JGEOG408101
  • Utlu M., Toprak A., Özdemir H. (2012). Köyceğiz Gölü Kuzey Havzalarının Jeomorfometrik Analizlere Bağlı Değerlendirilmesi, III. Ulusal Jeomorfoloji Sempozyumu, Hatay.
  • Utlu, M. & Ghasemlounia, R. (2021) Flood Prioritization Watersheds of the Aras River, Based on Geomorphometric Properties: Case Study Iğdır Province, Jeomorfolojik Araştırmalar Dergisi / Journal of Geomorphological Researches, 2021 (6): 21-40 doi: 10.46453/jader.781152
  • Utlu, M., Ghasemlounıa, R., & Demirbilek, S. (2025). Flood Susceptibility Mapping in the İskenderun Gulf Basins (Türkiye) Using Morphometric and Multivariate Techniques. Jeomorfolojik Araştırmalar Dergisi(15), 170-188. https://doi.org/10.46453/jader.1790383
  • Uzun, M., (2019). Evaluation of fluvial processes and formation of drainage network with morphometric indices in Dilderesi Basin (Kocaeli). International Journal of Geography and Geography Education (IGGE), 40, 454-477. https://doi.org/10.32003/iggei.573354
  • Uzun, M. (2021). İnegöl Havzasında Drenaj Ağı Gelişimi ve Flüvyal Süreçlerin Morfometrik Analizlerle İncelenmesi. Ege Coğrafya Dergisi, 30(1), 85-106. https://doi.org/10.51800/ecd.906685
  • Verstappen, H. T. (1983). Applied Geomorphology Geomorphological Surveys for Environmental Development, Elsevier Science Publishing Company Inc., New York.
  • Waiyasusri, K., & Chotpantarat, S., (2020). Watershed prioritization of kaeng lawa subwatershed, khon kaen province using the morphometric and land-use analysis: A case study of heavy flooding caused by tropical storm podul. Water (Switzerland) 12. https://doi.org/10.3390/W12061570
  • Wu, Y. Zhang, Z. Qi, X. Hu, W., Si, S. (2024) Prediction of flood sensitivity based on Logistic Regression, eXtreme Gradient Boosting, and Random Forest modeling methods. Water Sci Technol,89 (10): 2605–2624. https://doi.org/10.2166/wst.2024.146
  • Yurddaş, K., & Karabulut, M. (2025). Gediz Havzası morfometrik özelliklerinin sel üretme potansiyeli açısından değerlendirilmesi. International Journal of Geography and Geography Education(55), 151-173. https://doi.org/10.32003/igge.1609570

Dalaman Çayı Havzası’nın Morfometrik Analiz Yöntemleri Kullanılarak Alt Havza Kapsamında Taşkın Duyarlılık Önceliklendirmesi

Yıl 2025, Cilt: 7 Sayı: 2, 68 - 84
https://doi.org/10.56130/tucbis.1807763

Öz

Dünyada son yıllarda frekansı ve etkisi artan taşkınların duyarlılık analizlerinde Coğrafi Bilgi Sistemleri (CBS), Uzaktan Algılama teknikleri, morfometrik analizler, yapay zeka yöntemleri ve istatistiki verilerin entegrasyonunu içeren sistematikler kullanılmaktadır. Bu çalışmada da Dalaman Çayı1 Havzası’nı oluşturan 8 alt havza kapsamında morfometrik analiz sonuçlarının farklı jeo-istatistiki yöntemler kullanılarak taşkın duyarlılık önceliklendirmesi modellenmiştir. Araştırmada ilk olarak çizgisel, alansal ve rölyef kapsamında 15 farklı indis ile alt havzaların morfometrik analiz sonuçları hesaplanmıştır. Daha sonra elde edilen morfometrik veriler Pearson Korelasyon katsayısı ile analiz edilmiştir. Elde edilen kantitatif verilerle taşkın sıralama yöntemi ve Normalleştirilmiş Morfometrik Taşkın İndisi (NMFI) yöntemi ile 2 farklı model olarak taşkın duyarlılık düzeyi ve önceliklendirmesi açısından Dalaman Çayı Havzası analiz edilmiştir. Analiz sonuçları özellikle havzanın yukarı çığırında yer alan alt havzaların (6, 7 ve 8 no’lu havzalar) taşkın duyarlılığının daha yüksek olduğunu ortaya koymuştur. Morfometrik sıralama yöntemine göre 3 alt havza, NFMI’ye göre 5 alt havza yüksek düzeyde taşkın duyarlılığına sahiptir. Dalaman Çayı havzasında daha önce meydana gelmiş 23 taşkın verisi ile morfometrik analizlerle oluşturulan taşkın duyarlılık sonuçları karşılaştırılmıştır. Karşılaştırma sonucuna göre özellikle önceliklendirmede ilk sırada yer alan ve yüksek taşkın duyarlılığına sahip 6, 7 ve 8 numaralı alt havzalarda geçmiş taşkınların %64’ünün gerçekleştiği tespit edilmiştir.

Kaynakça

  • Abdelgawad, A.G., Helal, E., Sobeih, M.F. Elsayed, H. (2024). Flood hazard mapping using a GIS-based morphometric analysis approach in arid regions, a case study in the Red Sea Region, Egypt. Appl Water Sci 14, 81 (2024). https://doi.org/10.1007/s13201-024-02130-5
  • Ahmed, A., Al Maliki, A., Hashim, B. vd., (2023). Flood susceptibility mapping utilizing the integration of geospatial and multivariate statistical analysis, Erbil area in Northern Iraq as a case study. Sci Rep 13, 11919 (2023). https://doi.org/10.1038/s41598-023-39290-4
  • Akbaş, A., Görüm, T., & Özdemir, H. (2025). Türkiye’de Taşkınların FlooDOT Tabanlı İncelenmesi ve Farklı Veri Kaynaklarının Mekânsal Karşılaştırılması. Turkish Journal of Civil Engineering, 36(6). https://doi.org/10.18400/tjce.1618212
  • Akşit, S. (2025). Doğal Ortam Koşullarının Akarsuların Su Kalitesi Üzerine Etkileri: Yukarı Dalaman Çayı Havzası Örneği. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (70), 345-360. https://doi.org/10.30794/pausbed.1611955
  • AlRifai, M. H., Kafy, A. A., & Altuwaijri, H. A. (2025). Quantitative Assessment of Flood Risk Through Multi Parameter Morphometric Analysis and GeoAI: A GIS-Based Study of Wadi Ranuna Basin in Saudi Arabia. Water, 17(14), 2108. https://doi.org/10.3390/w17142108
  • Al-Ruzouq, R., Shanableh, A., Jena, R., Gibril, M., Hammouri, N., & Lamghari, F. (2024). Flood susceptibility mapping using a novel integration of multi-temporal sentinel-1 data and eXtreme deep learning model. Geoscience Frontiers, 15(3). https://doi.org/10.1016/j.gsf.2024.101780
  • Arora, A., Durga G, P., Pandey, M. Arabameri, A. (2025) Machine learning model optimization for flood susceptibility zonation over the Kosi megafan, Himalayan foreland basin, India. Sci Rep 15, 32757 (2025). https://doi.org/10.1038/s41598-025-07403-w
  • Arabameri, A. Saha, S. Mukherjee, K. Blaschke, T. Chen, W. Ngo, P.T.T. Band, S.S. (2020). Modeling Spatial Flood using Novel Ensemble Artificial Intelligence Approaches in Northern Iran. Remote Sens. 2020, 12, 3423. https://doi.org/10.3390/rs12203423
  • Avcı, V. & Sunkar, M. (2015). Giresun'da sel ve taşkın oluşumuna neden olan aksu çayı ve batlama deresi havzalarının morfometrik analizleri. İstanbul Üniv. Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 30, 91-119.
  • Bhattarai, Y., Duwal, S., Sharma, S., & Talchabhadelc, R. (2024). Leveraging machine learning and open-source spatial datasets to enhance flood susceptibility mapping in transboundary river basin. International Journal of Digital Earth, 17(1). https://doi.org/10.1080/17538947.2024.2313857
  • Bogale, A. (2021). Morphometric Analysis of a Drainage Basin Using Geographical Information System in Gilgel Abay Watershed, Lake Tana Basin, Upper Blue Nile Basin, Ethiopia. Applied Water Science, 11(122). https://doi.org/10.1007/s13201-021-01447-9
  • Chapi, K., Singh, V. P., Shirzadi, A., Shahabi, H., Bui, D. T., Pham, B. T., & Khosravi, K. (2017). A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling & Software, 95, 229-245. https://doi.org/10.1016/j.envsoft.2017.06.012
  • CRED. (2025). (Université catholique de Louvain (UCLouvain).) Eylül 19, 2025 tarihinde EM-DAT: The international disaster database: https://www.emdat.be/ adresinden alındı
  • Costache, R., Pham, Q.B., Sharifi, E., Linh, N.T.T., Abba, S.I., Vojtek, M., Vojtekov´a, J., Nhi, P.T.T., Khoi, D.N., (2020). Flash-flood susceptibility assessment using multicriteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sens. 12, 106. https://doi.org/10.3390/rs12010106.
  • Dahri, N., Yousfi, R., Bouamrane, A., Abida, H., Pham, Q.B. and Derdous, O. (2022). Comparison of analytic network process and artificial neural network models for flash flood susceptibility assessment, Journal of African Earth Sciences, Vol. 193, 104576, doi: 10.1016/j.jafrearsci.2022.104576.
  • Danacıoğlu, Ş., & Öz N., M. (2025). Tahtalı Barajı Havzasında bulanık mantık yöntemi ile taşkın risk analizi. Journal of Anatolian Geography, 2(1), s. 82-89.
  • Derakhshani, R., Zaresefat, M., Nikpeyman, V., GhasemiNejad, A., Shafieibafti, S., Rashidi, A., Nemati, M., & Raoof, A. (2023). Machine Learning-Based Assessment of Watershed Morphometry in Makran. Land, 12(4), 776. https://doi.org/10.3390/land12040776
  • Devlin, S. Susan J. Gnanadesikan, R. Kettenring J.R. (1975). Robust estimation and outlier detection with correlation coefficients. Biometrika. 62 (3): 531–545. https://doi.org/10.1093/biomet/62.3.531
  • Dutal, H. (2023). Using morphometric analysis for assessment of flash flood susceptibility in the Mediterranean region of Turkey. Environ Monit Assess 195, 582 (2023). https://doi.org/10.1007/s10661-023-11201-0
  • Elbaşı, E., & Özdemir, H. (2018). Marmara Denizi Akarsu Havzalarının Morfometrik Analizi. Journal of Geography(36), 63-84. http://dx.doi.org/10.26650/JGEOG418790
  • Erten, A & Gürbüz A., (2018). Dalaman Çayı Drenaj Havzasının Morfometrik İndisler Kullanarak Hidrolojik Özelliklerinin Belirlenmesi, VII. Uzaktan Algılama-CBS Sempozyumu (UZAL-CBS 2018), 18-21 Eylül 2018, Eskişehir
  • Esen, F. (2022). Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. International Journal of Geography and Geography Education (IGGE), 47, 233-257. http://dx.doi.org/10.32003/igge.1126933
  • Evans, I. S. (1972). General Geomorphometry, Derivatives of Altitude, and Descriptive Statistics. Spatial Analysis in Geomorphology, 9, 17–90.
  • Farhan, Y., Anbar, A., Al-Shaikh, N., Mousa, R., (2017). Prioritization of Semi-Arid Agricultural Watershed Using Morphometric and Principal Component Analysis, Remote Sensing, and GIS Techniques, the Zerqa River Watershed, Northern Jordan. Agric. Sci. 08, 113–148. https://doi.org/10.4236/as.2017.81009.
  • Ghasemlouni, R., & Utlu, M., (2021). Flood prioritization of basins based on geomorphometric properties using principal component analysis, morphometric analysis and Redvan’s priority methods: A case study of Hars¸it River basin, Journal of Hydrology 603 (2021) 127061, https://doi.org/10.1016/j.jhydrol.2021.127061
  • Gregory, K., & Walling, D. (2010). The Varıatıon Of Draınage Densıty Wıthın A Catchment. International Association of Scientific Hydrology, 13(2), s. 61-68. https://doi.org/10.1080/02626666809493583
  • Horton, R. E. (1945). Erosional Development Of Streams And Their Drainage Basins: Hydrophysical Approach To Quantitative Morphology. Bull Geologycal Soc Am 56, 275- 370.
  • Joy, M., Upaul, S., Fatema, K., & Amin, F. (2023). Application of GIS and remote sensing in morphometric analysis of river basin at the south-western part of great Ganges delta, Bangladesh Open Access. Hydrology Research, 54(6), s. 739-755. https://doi.org/10.2166/nh.2023.087
  • Karakoca, E., & Ünver, A. (2025). Analitik hiyerarşi süreci ve coğrafi bilgi sistemleri kullanarak Eşen Çayı Havzası’nda taşkın riski değerlendirmesi ve haritalandırılması. Geomatik, 10(1), 127-143. https://doi.org/10.29128/geomatik.1542251
  • Kaya M., Ç. (2022). Taşkın Duyarlılık Haritalarının Oluşturulmasında Kullanılan Yöntemler. Türk Uzaktan Algılama ve CBS Dergisi. https://doi.org/10.48123/rsgis.1129606
  • Keskin, M.E., Taylan, E.D., Aydın, T., (2015). Dalaman Çayı Akımlarının Yıllık Zaman Serileri İle Modellenmesi. VIII. Ulusal Hidroloji Kongresi, 573-581, Şanlıurfa.
  • Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering, 10(6), 362. Kollias, D. I., Bathrellos, G. D., Skilodimou, H. D., & Ahmad, M. N. (2025). Morphometric and morphotectonic parameters in flood studies and flood hazard assessment: A literature review. Zeitschrift für Geomorphologie. https://doi.org/10.1127/zfg/0834
  • Kuşçu, İ., & Özdemir, H. (2023). Taşkın duyarlılık analizinde kullanılan parametreler üzerine bir değerlendirme. Türk Coğrafya Dergisi (84), 67-83. https://dergipark.org.tr/tr/pub/tcd/issue/82331/1345962
  • Liu, J., Feng, S., Gu, X., Zhang, Y., Beck, H. E., Zhang, J., & Yan, S. (2022). Global changes in floods and their drivers. Journal of Hydrology, 614, 128553. https://doi.org/10.1016/j.jhydrol.2022.128553
  • Liu Q, Du M, Wang Y, Deng J, Yan W, Qin C, Liu M, Liu J (2024). Global, regional and national trends and impacts of natural floods, 1990-2022. Bull World Health Organ. 1;102(6):410-420. https://doi.org/10.2471/BLT.23.290243.
  • Luppichini, M., Capolongo, D., Scardino, G., Scicchitano, G., & Bini, M. (2025). Artificial Intelligence in Geomorphology: A Bibliometric Analysis of Trends, Techniques, and Global Research Patterns. Geosciences, 15(9), 331. https://doi.org/10.3390/geosciences15090331
  • Mahala, A., (2020). The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Appl. Water Sci. 10, 33. https://doi.org/10.1007/s13201-019-1118-2.
  • Mani, A., Kumari, M., & Badola, R. (2022). Morphometric analysis of Suswa River Basin using geospatial techniques. Engineering Proceedings, 27(1). https://doi.org/10.3390/ecsa-9-13225
  • Melton, M.A. (1957). An analysis of the relations among elements of climate, Surface properties and geomorphology, Project NR 389042, Tech. Rep. 11, Columbia University
  • Merz, B., Blöschl, G., Vorogushyn, S. Dottori, F., Aets, J., Bates, P., Bertola, M., vd., (2021) Causes, impacts and patterns of disastrous river floods. Nat Rev Earth Environ 2, 592–609 (2021). https://doi.org/10.1038/s43017-021-00195-3
  • Miller, V. C. (1953). A Quantitative Geomorphic Study Of Drainage Basin Characteristics İn The Clinch Mountain Area, Virginia And Tennessee, Technical Report no: 3, Department of Geology, Columbia University, New York, USA.
  • Mishra, A.K., & Rai, S.C., (2020). Geo-hydrological inferences through morphometric aspects of the Himalayan glacial-fed river: a case study of the Madhyamaheshwar River basin. Arab. J. Geosci. 13, 533. https://doi.org/10.1007/s12517-020-05571-9.
  • Mohammed, J. A., Yimam, Z. A., Addissu, S., Endris, A., Haile, B., Ali, A., Tsegaye, S., Shitu, K. & Mohammed Y., (2025) Identification and prioritization of flood-prone sub-watersheds using morphometric analysis and remote sensing in the Beshilo Sub-basin, Ethiopia, Geocarto International, 40:1, 2526503, https://doi.org/10.1080/10106049.2025.2526503
  • Nişancı, G. Ş., Cihangir, M. E., & Küçükönder, M. (2024). Türkiye’de Ana Akarsu Havzaları Ölçeğinde Morfometrik İndislerle Sel/Taşkın Arasındaki İlişkinin Değerlendirilmesi. Doğu Coğrafya Dergisi, 29(51), 13-40. https://doi.org/10.17295/ataunidcd.1461010
  • Obeidat, M., Awawdeh, M., & Al-Hantouli, F. (2021). Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. Journal of Flood Risk, 14(2). doi:https://doi.org/10.1111/jfr3.12711
  • Ocak, F., Bahadır, M., & Aylar, F. (2021). Bakacak Deresi Havzası’nın (Samsun) Coğrafi Analizi ve Taşkın Duyarlılığı. Mavi Atlas, 9(2), 61-81. https://doi.org/10.18795/gumusmaviatlas.981217 Özdemir, H. (2011). Havza Morfometrisi ve Taşkınlar. Fiziki Coğrafya Araştırmaları; Sistematik ve Bölgesel, Türk Coğrafya Kurumu Yayınları (5), s. 507-526.
  • Özdemir, H., & Akbaş, A. (2023). Is there a consistency in basin morphometry and hydrodynamic modelling results in terms of the flood generation potential of basins? A case study from the Ulus River Basin (Türkiye). Journal of Hydrology, 625:129926. https://doi.org/10.1016/j.jhydrol.2023.129926
  • Papaioannou, G., Vasiliades, L., Loukas, A., (2015). Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resour. Manag. 29, 399–418. https://doi.org/10.1007/s11269-014-0817-6.
  • Paul, A., (2025). Artificial neural networks for flood susceptibility analysis in Gangarampur sub-division of Dakshin Dinajpur, West Bengal, India. Frontiers in Engineering and Built Environment, 5 (1): 1–21. https://doi.org/10.1108/FEBE-09-2024-0061
  • Pike, R., Evans, I., Hengl, T. (2009). Geomorphometry: A Brief Guide. Geomorphometry: Concepts, Software, Applications (pp. 3-30), Amsterdam: Elsevier.
  • Rai, P.K., Singh, P., Mishra, V.N., Singh, A., Sajan, B., Shahi, A.P., (2020). Geospatial approach for quantitative drainage morphometric analysis of varuna river basin. India. J. Landsc. Ecol. Republic) 12, 1–25. https://doi.org/10.2478/jlecol-2019-0007.
  • Rajasekhar, M., Raju, G. S., & Raju, R. S. (2020). Morphometric analysis of the Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India, using geospatial technologies. Groundwater for Sustainable Development, 11, 100434.
  • Ratnam, N., Srivastava, Y., Venkateswara Rao, V., Amminedu, E., & Murthy, K. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis — Remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing, 33, s. 25-38. https://doi.org/10.1007/BF02989988
  • Saikh, N., & Mondal, P. (2023). GIS-based machine learning algorithm for flood susceptibility analysis in the Pagla river basin, Eastern India. Natural Hazards Research, 3(3), s. 420-436. doi:https://doi.org/10.1016/j.nhres.2023.05.004
  • Schumm, S. A. (1956). Evolution Of Drainage Systems And Slopes İn Badlands At Perth Amboy, New Jersey. Geological. Soc. Am. Bul. 67, 597-646.
  • Sen, D., & Das, S. (2025). Flood Susceptibility Assessment in the Teesta River Basin, India: An Advanced Geospatial Artificial Intelligence Approach Leveraging Spatial Data Augmentation. SN COMPUT. SCI. 6, 368 (2025). https://doi.org/10.1007/s42979-025-03836-2
  • Seth, S. M., Ramasastri K. S., Rao, V. N. (1998). Representative Basin Studies: Morphometric Analysis of Suddagedda Basin, Andhra Pradesh, National Institute of Hydrology Jal Vıgyan, 1-28.
  • Shekar, P. R. Mathew, A. Arun P. S., Gopi V. P. (2023). Sub-watershed prioritization using morphometric analysis, principal component analysis, hypsometric analysis, land use/land cover analysis, and machine learning approaches in the Peddavagu River Basin, India. Journal of Water and Climate Change 14 (7): 2055–2084. https://doi.org/10.2166/wcc.2023.221
  • Shekar, P., & Mathew, A. (2024). Morphometric analysis of watersheds: A comprehensive review of data sources, quality, and geospatial techniques. Watershed Ecology and the Environment, 6, s. 13-25. https://doi.org/10.1016/j.wsee.2023.12.001
  • Soomro, S., Wei, H., Boota, M. W., Soomro, N.-E., Faisal, M., Nazli, S., sarwari, S., Shi, X., Hu, C., Guo, J., & Li, Y. (2025). River basin urban flood resilience: A multi-dimensional framework for risk mitigation to adaptive management and ecosystem protection under changing climate. Ecological Informatics, 91, 103412. https://doi.org/10.1016/j.ecoinf.2025.103412
  • Strahler, A. N. (1952). Hypsometric (area-altitude) Analysis of Erosional Topography, Geological Society of America Bulletin 63, 1117-1142.
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Trans American GeophysicalUnion 38, 913-920.
  • Strahler, A. (1964). Quantitative Geomorphology of Drainage Basins and Channel Networks. In: Chow, V., Ed., Handbook of Applied Hydrology. New York.
  • Şenel, M. (2007). Likya naplarının özellikleri ve evrimi. Menderes Masifi Kolokyumu, Genişletilmiş Bildiri Özleri Kitabı, İzmir, 51-55.
  • Taşoğlu, E., Öztürk, M. Z. & Yazıcı, Ö. (2024). High resolution Köppen-Geiger climate zones of Türkiye. International Journal of Climatology, 44(14), 5248-5265. https://doi.org/10.1002/joc.8635
  • Tokgözlü, A., & Özkan, E. (2018). Taşkın Risk Haritalarında AHP Yönteminin Uygulanması: Aksu Çayı Havzası Örneği. Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi(44), 151-176.
  • Utlu, M., & Ekinci, D. (2015). Namnam Çayı Havzasının (Muğla) Uygulamalı Hidrografyası. Journal of Geography(30), 38-60.
  • Utlu, M., & Özdemir, H. (2018). Havza Morfometrik Özelliklerinin Taşkın Üretmedeki Rolü Biga Çayı Havzası Örneği. Journal of Geography(36), 49-62. https://doi.org/10.26650/JGEOG408101
  • Utlu M., Toprak A., Özdemir H. (2012). Köyceğiz Gölü Kuzey Havzalarının Jeomorfometrik Analizlere Bağlı Değerlendirilmesi, III. Ulusal Jeomorfoloji Sempozyumu, Hatay.
  • Utlu, M. & Ghasemlounia, R. (2021) Flood Prioritization Watersheds of the Aras River, Based on Geomorphometric Properties: Case Study Iğdır Province, Jeomorfolojik Araştırmalar Dergisi / Journal of Geomorphological Researches, 2021 (6): 21-40 doi: 10.46453/jader.781152
  • Utlu, M., Ghasemlounıa, R., & Demirbilek, S. (2025). Flood Susceptibility Mapping in the İskenderun Gulf Basins (Türkiye) Using Morphometric and Multivariate Techniques. Jeomorfolojik Araştırmalar Dergisi(15), 170-188. https://doi.org/10.46453/jader.1790383
  • Uzun, M., (2019). Evaluation of fluvial processes and formation of drainage network with morphometric indices in Dilderesi Basin (Kocaeli). International Journal of Geography and Geography Education (IGGE), 40, 454-477. https://doi.org/10.32003/iggei.573354
  • Uzun, M. (2021). İnegöl Havzasında Drenaj Ağı Gelişimi ve Flüvyal Süreçlerin Morfometrik Analizlerle İncelenmesi. Ege Coğrafya Dergisi, 30(1), 85-106. https://doi.org/10.51800/ecd.906685
  • Verstappen, H. T. (1983). Applied Geomorphology Geomorphological Surveys for Environmental Development, Elsevier Science Publishing Company Inc., New York.
  • Waiyasusri, K., & Chotpantarat, S., (2020). Watershed prioritization of kaeng lawa subwatershed, khon kaen province using the morphometric and land-use analysis: A case study of heavy flooding caused by tropical storm podul. Water (Switzerland) 12. https://doi.org/10.3390/W12061570
  • Wu, Y. Zhang, Z. Qi, X. Hu, W., Si, S. (2024) Prediction of flood sensitivity based on Logistic Regression, eXtreme Gradient Boosting, and Random Forest modeling methods. Water Sci Technol,89 (10): 2605–2624. https://doi.org/10.2166/wst.2024.146
  • Yurddaş, K., & Karabulut, M. (2025). Gediz Havzası morfometrik özelliklerinin sel üretme potansiyeli açısından değerlendirilmesi. International Journal of Geography and Geography Education(55), 151-173. https://doi.org/10.32003/igge.1609570
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Coğrafi Bilgi Sistemleri ve Mekansal Veri Modelleme, Coğrafi Bilgi Sistemleri, Fiziksel Coğrafya ve Çevre Jeolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Murat Uzun 0000-0003-2191-3936

Kadir Tatlıdil 0009-0008-6928-8248

Gönderilme Tarihi 21 Ekim 2025
Kabul Tarihi 22 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Uzun, M., & Tatlıdil, K. (t.y.). Dalaman Çayı Havzası’nın Morfometrik Analiz Yöntemleri Kullanılarak Alt Havza Kapsamında Taşkın Duyarlılık Önceliklendirmesi. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 7(2), 68-84. https://doi.org/10.56130/tucbis.1807763

-