Araştırma Makalesi
BibTex RIS Kaynak Göster

Artırılmış gerçeklik teknolojisi ile iç mekân navigasyonu

Yıl 2021, Cilt: 3 Sayı: 1, 48 - 52, 28.05.2021

Öz

İç ve dış mekânın modellenmesi ve oluşturulan modellere göre navigasyon uygulamalarının tasarlanması harita mühendislerinin ilgilendiği özel çalışma alanlarından biridir. Akıllı cep telefonu kullanımındaki artışla birlikte nasıl gidilir sorusuna cevap veren navigasyon kavramı insan hayatının vazgeçilmez bir parçası haline gelmiştir. Uydu teknolojilerine bağlı küresel navigasyon sistemleri dış mekân uygulamalarında kullanıcı konumunun takibi için geçerli çözümler sunarken, iç mekânda sinyal kesintilerinden dolayı uygun bir çözüm üretemez. İç mekânda kullanıcıların konum bilgilerini elde etmek ve izleme yapabilmek için geliştirilen yöntemler ek donanım gerektirir ve yüksek maliyetlidir. Bu çalışma, akıllı cep telefonlarında kullanılabilen artırılmış gerçeklik teknolojisi ile kullanıcı konum takibi için ek donanım gerektirmeyen bir iç mekân navigasyon uygulaması geliştirmeyi hedeflemiştir. Unity 3D platformunda, Google ARCore yazılım geliştirme aracı ve C# programlama dili ile geliştirilen uygulamanın kullanılabilirliği 100 m koridor uzunluğu olan kapalı bir mekânda test edilmiştir. Yapılan doğruluk analizi uygulamanın 1 m’nin altında konum doğruluğuna ulaşabildiğini göstermiştir.


Kaynakça

  • Chen A T Y, Fan J, Biglari-Abhari M, Kevin I, & Wang K (2017). A computationally efficient pipeline for camera-based indoor person tracking. International Conference on Image and Vision Computing New Zealand (IVCNZ), 1-6, Christchurch, New Zealand.
  • Dardari D, Closas P, & Djurić P M (2015). Indoor tracking: Theory, methods, and technologies. IEEE Transactions on Vehicular Technology, 64(4), 1263-1278.
  • DiVerdi S, & Höllerer T (2008). Heads up and camera down: A vision-based tracking modality for mobile mixed reality. IEEE Transactions on visualization and computer graphics, 14(3), 500-512.
  • Emilsson E & Rydell J (2012). Sensor fusion for improved indoor navigation. In Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI (Vol. 8542, p. 85420M). International Society for Optics and Photonics.
  • Emilsson E & Rydell J (2012). Sensor fusion for improved indoor navigation. In Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI (Vol. 8542, p. 85420M). International Society for Optics and Photonics.
  • Farid Z, Nordin R, & Ismail M (2013). Recent advances in wireless indoor localization techniques and system Journal of Computer Networks and Communications, 1-12, https://doi.org/10.1155/2013/185138.
  • Glover J (2018). Unity 2018 augmented reality projects: build four immersive and fun AR applications using ARKit, ARCore, and Vuforia. Packt Publishing Ltd.
  • Guzmán Guzmán, J D (2014) Augmented Reality user interface analysis in mobile devices. MS Thesis, Polytechnic University of Catalonia, Barcelona.
  • Huey L C, Sebasian P, & Drieberg M (2011). Augmented Reality based indoor positioning navigation tool. In IEEE Conference on Open Systems, 256-260, Langkawi, Malaysia.
  • Iozan L I, Collin J, Takala J & Rusu C (2011). Improved indoor navigation system based on MEMS technology. In ISSCS 2011-International Symposium on Signals, Circuits and Systems (pp. 1-4). IEEE.
  • Iozan L I, Collin J, Takala J & Rusu C (2011). Improved indoor navigation system based on MEMS technology. In ISSCS 2011-International Symposium on Signals, Circuits and Systems (pp. 1-4). IEEE.
  • Kim J W, Jang H J, Hwang D H, & Park C (2004). A step, stride and heading determination for the pedestrian navigation system. Journal of Global Positioning Systems, 3(1-2), 273-279.
  • Koyun A & Cankaya I A (2018). Implementation of a Beacon-Enabled Mobile Indoor Navigation System Using Augmented Reality. Tehnički vjesnik, 2018, 25.4: 979-985.
  • Koyun A & Cankaya I A (2018). Implementation of a Beacon-Enabled Mobile Indoor Navigation System Using Augmented Reality. Tehnički vjesnik, 2018, 25.4: 979-985.
  • Kriz P, Maly F & Kozel T (2016). Improving indoor localization using bluetooth low energy beacons. Mobile Information Systems, 2016.
  • Kriz P, Maly F & Kozel T (2016). Improving indoor localization using bluetooth low energy beacons. Mobile Information Systems, 2016.
  • Li Y, Zhuang Y, Lan H, Zhou Q, Niu X & El-Sheimy, N (2015). A hybrid WiFi/magnetic matching/PDR approach for indoor navigation with smartphone sensors. IEEE Communications Letters, 20(1), 169-172.
  • Li Y, Zhuang Y, Lan H, Zhou Q, Niu X & El-Sheimy, N (2015). A hybrid WiFi/magnetic matching/PDR approach for indoor navigation with smartphone sensors. IEEE Communications Letters, 20(1), 169-172.
  • Li Y, Zhuang Y, Zhang P, Lan H, Niu, X & El-Sheimy N (2017). An improved inertial/wifi/magnetic fusion structure for indoor navigation. Information Fusion, 34, 101-119.
  • Li Y, Zhuang Y, Zhang P, Lan H, Niu, X & El-Sheimy N (2017). An improved inertial/wifi/magnetic fusion structure for indoor navigation. Information Fusion, 34, 101-119.
  • Liu H, Darabi H, Banerjee P, & Liu J (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1067-1080.
  • May A J, Ross T, Bayer S H & Tarkiainen, M J (2003). Pedestrian navigation aids: information requirements and design implications. Personal and Ubiquitous Computing, 7(6), 331-338.
  • May A J, Ross T, Bayer S H & Tarkiainen, M J (2003). Pedestrian navigation aids: information requirements and design implications. Personal and Ubiquitous Computing, 7(6), 331-338.
  • Mistry P, Kuroki T, & Chang C (2008). TaPuMa: tangible public map for information acquirement through the things we carry. In Proceedings of the 1st international conference on Ambient media and systems,1-5, Brussels, Belgium.
  • Neges M, Koch C, König M & Abramovici M (2017). Combining visual natural markers and IMU for improved AR based indoor navigation. Advanced Engineering Informatics, 31, 18-31.
  • Neges M, Koch C, König M & Abramovici M (2017). Combining visual natural markers and IMU for improved AR based indoor navigation. Advanced Engineering Informatics, 31, 18-31.
  • Patron C (2005) The concept for the use of augmented reality in assembly planning. PhD Thesis, Technical University of Munich, Munich (in German).
  • Rehman U, & Cao S (2016). Augmented-reality-based indoor navigation: A comparative analysis of handheld devices versus google glass. IEEE Transactions on Human-Machine Systems, 47(1), 140-151.
  • Schilling T (2008) Augmented reality in der produktentstehung. PhD Thesis, Technical University of Ilmenau, Ilmenau (in German).
  • Tatzgern M, Kalkofen D, Grasset R, & Schmalstieg D (2011). Embedded virtual views for augmented reality navigation. In Proc. Int. Symp. Mixed Augmented Reality-Workshop Vis. Mixed Reality Environ., 115-123, Basel, Switzerland.
  • Vogl W (2009) Eine interaktive räumliche Benutzerschnittstelle für die Programmierung Von Industrierobotern. Herbert Utz Verlag. ISBN:3-83160-869-5.
  • Wang P P, Wang T, Ding D, Zhang Y, Bi W, & Bao Y (2009). Mirror world navigation for mobile users based on augmented reality. In Proceedings of the 17th ACM international conference on Multimedia,1025-1026, Beijing, China.
  • Werner M, Kessel M, & Marouane C (2011). Indoor positioning using smartphone camera. International Conference on Indoor Positioning and Indoor Navigation, 1-6, Guimarães, Portugal.

Indoor navigation application using augmented reality technology

Yıl 2021, Cilt: 3 Sayı: 1, 48 - 52, 28.05.2021

Öz

Modelling indoor and outdoor areas and designing navigation applications based on the created models is one of the special working areas of interest for geomatics engineers. The concept of navigation, which answers the question of how to get there, has now become an indispensable part of human life with the increase in the use of smartphones. While the Global Navigation Satellite System (GNSS) provides sufficient solutions for tracking the location of users in outdoor navigation applications, it cannot provide a suitable solution due to signal interruptions in indoor areas. The methods developed to obtain and track the location information of the users indoors require additional hardware or equipment and are high cost. This study aims to develop an indoor navigation application that does not require additional equipment to track user with the augmented reality technology used in smart mobile phones. On the Unity 3D platform, the usability of the application developed with the Google ARCore software development kit and C # programming language was tested in an indoor area with a corridor length of 100 m. The accuracy analysis has shown that the application can reach position accuracy below 1 m.

Kaynakça

  • Chen A T Y, Fan J, Biglari-Abhari M, Kevin I, & Wang K (2017). A computationally efficient pipeline for camera-based indoor person tracking. International Conference on Image and Vision Computing New Zealand (IVCNZ), 1-6, Christchurch, New Zealand.
  • Dardari D, Closas P, & Djurić P M (2015). Indoor tracking: Theory, methods, and technologies. IEEE Transactions on Vehicular Technology, 64(4), 1263-1278.
  • DiVerdi S, & Höllerer T (2008). Heads up and camera down: A vision-based tracking modality for mobile mixed reality. IEEE Transactions on visualization and computer graphics, 14(3), 500-512.
  • Emilsson E & Rydell J (2012). Sensor fusion for improved indoor navigation. In Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI (Vol. 8542, p. 85420M). International Society for Optics and Photonics.
  • Emilsson E & Rydell J (2012). Sensor fusion for improved indoor navigation. In Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI (Vol. 8542, p. 85420M). International Society for Optics and Photonics.
  • Farid Z, Nordin R, & Ismail M (2013). Recent advances in wireless indoor localization techniques and system Journal of Computer Networks and Communications, 1-12, https://doi.org/10.1155/2013/185138.
  • Glover J (2018). Unity 2018 augmented reality projects: build four immersive and fun AR applications using ARKit, ARCore, and Vuforia. Packt Publishing Ltd.
  • Guzmán Guzmán, J D (2014) Augmented Reality user interface analysis in mobile devices. MS Thesis, Polytechnic University of Catalonia, Barcelona.
  • Huey L C, Sebasian P, & Drieberg M (2011). Augmented Reality based indoor positioning navigation tool. In IEEE Conference on Open Systems, 256-260, Langkawi, Malaysia.
  • Iozan L I, Collin J, Takala J & Rusu C (2011). Improved indoor navigation system based on MEMS technology. In ISSCS 2011-International Symposium on Signals, Circuits and Systems (pp. 1-4). IEEE.
  • Iozan L I, Collin J, Takala J & Rusu C (2011). Improved indoor navigation system based on MEMS technology. In ISSCS 2011-International Symposium on Signals, Circuits and Systems (pp. 1-4). IEEE.
  • Kim J W, Jang H J, Hwang D H, & Park C (2004). A step, stride and heading determination for the pedestrian navigation system. Journal of Global Positioning Systems, 3(1-2), 273-279.
  • Koyun A & Cankaya I A (2018). Implementation of a Beacon-Enabled Mobile Indoor Navigation System Using Augmented Reality. Tehnički vjesnik, 2018, 25.4: 979-985.
  • Koyun A & Cankaya I A (2018). Implementation of a Beacon-Enabled Mobile Indoor Navigation System Using Augmented Reality. Tehnički vjesnik, 2018, 25.4: 979-985.
  • Kriz P, Maly F & Kozel T (2016). Improving indoor localization using bluetooth low energy beacons. Mobile Information Systems, 2016.
  • Kriz P, Maly F & Kozel T (2016). Improving indoor localization using bluetooth low energy beacons. Mobile Information Systems, 2016.
  • Li Y, Zhuang Y, Lan H, Zhou Q, Niu X & El-Sheimy, N (2015). A hybrid WiFi/magnetic matching/PDR approach for indoor navigation with smartphone sensors. IEEE Communications Letters, 20(1), 169-172.
  • Li Y, Zhuang Y, Lan H, Zhou Q, Niu X & El-Sheimy, N (2015). A hybrid WiFi/magnetic matching/PDR approach for indoor navigation with smartphone sensors. IEEE Communications Letters, 20(1), 169-172.
  • Li Y, Zhuang Y, Zhang P, Lan H, Niu, X & El-Sheimy N (2017). An improved inertial/wifi/magnetic fusion structure for indoor navigation. Information Fusion, 34, 101-119.
  • Li Y, Zhuang Y, Zhang P, Lan H, Niu, X & El-Sheimy N (2017). An improved inertial/wifi/magnetic fusion structure for indoor navigation. Information Fusion, 34, 101-119.
  • Liu H, Darabi H, Banerjee P, & Liu J (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1067-1080.
  • May A J, Ross T, Bayer S H & Tarkiainen, M J (2003). Pedestrian navigation aids: information requirements and design implications. Personal and Ubiquitous Computing, 7(6), 331-338.
  • May A J, Ross T, Bayer S H & Tarkiainen, M J (2003). Pedestrian navigation aids: information requirements and design implications. Personal and Ubiquitous Computing, 7(6), 331-338.
  • Mistry P, Kuroki T, & Chang C (2008). TaPuMa: tangible public map for information acquirement through the things we carry. In Proceedings of the 1st international conference on Ambient media and systems,1-5, Brussels, Belgium.
  • Neges M, Koch C, König M & Abramovici M (2017). Combining visual natural markers and IMU for improved AR based indoor navigation. Advanced Engineering Informatics, 31, 18-31.
  • Neges M, Koch C, König M & Abramovici M (2017). Combining visual natural markers and IMU for improved AR based indoor navigation. Advanced Engineering Informatics, 31, 18-31.
  • Patron C (2005) The concept for the use of augmented reality in assembly planning. PhD Thesis, Technical University of Munich, Munich (in German).
  • Rehman U, & Cao S (2016). Augmented-reality-based indoor navigation: A comparative analysis of handheld devices versus google glass. IEEE Transactions on Human-Machine Systems, 47(1), 140-151.
  • Schilling T (2008) Augmented reality in der produktentstehung. PhD Thesis, Technical University of Ilmenau, Ilmenau (in German).
  • Tatzgern M, Kalkofen D, Grasset R, & Schmalstieg D (2011). Embedded virtual views for augmented reality navigation. In Proc. Int. Symp. Mixed Augmented Reality-Workshop Vis. Mixed Reality Environ., 115-123, Basel, Switzerland.
  • Vogl W (2009) Eine interaktive räumliche Benutzerschnittstelle für die Programmierung Von Industrierobotern. Herbert Utz Verlag. ISBN:3-83160-869-5.
  • Wang P P, Wang T, Ding D, Zhang Y, Bi W, & Bao Y (2009). Mirror world navigation for mobile users based on augmented reality. In Proceedings of the 17th ACM international conference on Multimedia,1025-1026, Beijing, China.
  • Werner M, Kessel M, & Marouane C (2011). Indoor positioning using smartphone camera. International Conference on Indoor Positioning and Indoor Navigation, 1-6, Guimarães, Portugal.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Salih Hamdi Çalık 0000-0002-6451-1147

Fatih Gülgen 0000-0002-8754-9017

Yayımlanma Tarihi 28 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 1

Kaynak Göster

APA Çalık, S. H., & Gülgen, F. (2021). Artırılmış gerçeklik teknolojisi ile iç mekân navigasyonu. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 3(1), 48-52.