Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıldız Irmağı havzasında eğim dikliği ve uzunluğunun (LS) belirlenmesi

Yıl 2024, Cilt: 6 Sayı: 2, 93 - 99, 20.12.2024
https://doi.org/10.56130/tucbis.1532824

Öz

Türkiye eğimli topografyası, farklı iklim ve jeolojik oluşumları ile doğal erozyona karşı hassastır. Bu süreçler doğal olmakla birlikte, insan faaliyetleriyle daha da kötüleşmekte ve önemli çevresel zorluklara yol açabilmektedir. Yıldız Irmağı havzası Kızılırmak’ın bir koludur. Kızılırmak, taşıdığı sediment yüzünden renginin kızıl olması nedeniyle Kızılırmak ismini almıştır. Dolayısıyla erozyon bölge için önemli bir sorundur. Çalışmada erozyondan önemli ölçüde etkilenen Yıldız Irmağı havzasının eğim dikliği ve eğim uzunluğu etkisi belirlenmeye çalışılmıştır. Sayısal yükseklik modeli (SYM) temel veri olarak kullanılmıştır. SYM verisinden sırasıyla eğim, akış yönü ve akış birikimi katmaları oluşturulmuştur. Elde edilen katmanlar kullanılarak eğim dikliği ve uzunluğu (LS) hesaplanmıştır. Yıldız Irmağı Havzasında LS değeri 0-2 arasında olan alanlar havzanın %48.6; 2-6; %25.5; 6 -12 %18,2; 12-18 %5.2; 18-24 %1.8; 24-63.1 %0.7’sini kaplamaktadır. LS değeri düşük yerlerin oranı havzanın büyük bölümünü oluşturmaktadır.

Kaynakça

  • Anonim. (2017). Global soil partnership endorses guidelines on sustainable soil management. Erişildi 10 Ağustos, 2024 http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/
  • Balabanlı, C., Türk, M., & Yüksel, O. (2005). Erozyon ve çayır-mera ilişkileri. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 6(2), 23-34.
  • Barnes, R. (2017). Parallel non-divergent flow accumulation for trillion cell digital elevation models on desktops or clusters. Environmental Modelling & Software, 92, 202-212. https://doi.org/10.1016/j.envsoft.2017.02.022
  • Çarkacı D. A., Balta Ç., & Karadavut U. (2013). Ulusal çölleşme ve erozyon araştırma merkezi. Ulusal Kop Bölgesel Kalkınma Sempozyumu. Konya, Türkiye.
  • Cordonnier, G., Bovy, B., & Braun, J. (2019). A versatile, linear complexity algorithm for flow routing in topographies with depressions. Earth Surface Dynamics, 7(2), 549-562. https://doi.org/10.5194/esurf-7-549-2019
  • Corine. (2018). Corine. Erişildi 10 Ağustos, 2024 https://doi.org/10.2909/71c95a07-e296-44fc-b22b-415f42acfdf0
  • Görcelioğlu, E. (1995). Havzalarda orman ve otlak alanları amenajmanının su verimine ve kalitesine etkileri üzerine bazı açıklamalar. İstanbul Üniversitesi Orman Fakültesi Dergisi, 45(1-2), 39-52.
  • Hudson, N. (1995). Soil conservation. B T Batsford.
  • Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric engineering and remote sensing, 54(11), 1593-1600.
  • Kotyra, B., Chabudziński, Ł., & Stpiczyński, P. (2021). High-performance parallel implementations of flow accumulation algorithms for multicore architectures. Computers & Geosciences, 151, 104741. https://doi.org/10.1016/j.cageo.2021.104741
  • Ortega, L., & Rueda, A. (2010). Parallel drainage network computation on CUDA. Computers & Geosciences, 36(2), 171-178. https://doi.org/10.1016/j.cageo.2009.07.005
  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). Revised universal soil loss equation (RUSLE), Journal Soil Water Conservation,46, 30-33.
  • Renard, K. G., & Ferreira, V. A. (1993). RUSLE model description and database sensitivity. Journal of environmental quality, 22(3), 458-466. https://doi.org/10.2134/jeq1993.00472425002200030009x
  • Renard, K. G., Foster, G. R., Yoder, D. C., & McCool, D. K. (1994). RUSLE revisited: Status, questions, answers, and the future. Journal of soil and water conservation, 49(3), 213-220.
  • Renard, K. G. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agricultural Research Service.
  • Şentürk, G. O., Gök, G., & Koçyiğit, H. (2023). Tarımda Karbon Ayak İzi ve İklim Değişikliğine Etkisi. Artvin Çoruh Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 1(1), 12-24.
  • Sten, J., Lilja, H., Hyväluoma, J., Westerholm, J., & Aspnäs, M. (2016). Parallel flow accumulation algorithms for graphical processing units with application to RUSLE model. Computers & Geosciences, 89, 88-95. https://doi.org/10.1016/j.cageo.2016.01.006
  • Wischmeier, W. H., & Smith, D. D. (1958). Rainfall energy and its relationship to soil loss. Eos, Transactions American Geophysical Union, 39(2), 285-291. https://doi.org/10.1029/TR039i002p00285
  • Wischmeier, W. H. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains, Guide for selection of practices for soil and water conservation. United States Government Printing Office.
  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.
  • Wuepper D., Borrelli P., & Robert Finger R. (2020). Countries and the global rate of soil erosion. Nature Sustainability 3, 51–55. https://doi.org/10.1038/s41893-019-0438-4
  • Zhou, G., Wei, H., & Fu, S. (2019). A fast and simple algorithm for calculating flow accumulation matrices from raster digital elevation. Frontiers of Earth Science, 13, 317-326. https://doi.org/10.1007/s11707-018-0725-9

Determination of slope steepness and length (LS) in Yıldız River basin

Yıl 2024, Cilt: 6 Sayı: 2, 93 - 99, 20.12.2024
https://doi.org/10.56130/tucbis.1532824

Öz

Turkey, with its steeply topography, diverse climate and geological formations, is susceptible to natural erosion. While these processes are natural, they are exacerbated by human activities and can lead to significant environmental challenges. The Yıldız River basin is a tributary of the Kızılırmak River. The Kızılırmak was named Kızılırmak because of its red color due to the sediment it carries. Erosion is therefore a major problem for the region. In this study, the effect of slope steepness and slope length of the Yıldız River basin, which is significantly affected by erosion, was tried to be determined. The digital elevation model (DEM) was used as the base data. Slope, flow direction and flow accumulation layers were created from DEM data respectively. Slope steepness and length (LS) were calculated using the layers obtained. In Yıldız River basin, areas with LS values between 0-2 cover 48.6%; 2-6 25.5%; 6 -12 18.2%; 12-18 5.2%; 18-24 1.8%; 24-63.1% 0.7% of the basin. The proportion of places with low LS values constitutes the majority of the basin.

Kaynakça

  • Anonim. (2017). Global soil partnership endorses guidelines on sustainable soil management. Erişildi 10 Ağustos, 2024 http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/
  • Balabanlı, C., Türk, M., & Yüksel, O. (2005). Erozyon ve çayır-mera ilişkileri. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 6(2), 23-34.
  • Barnes, R. (2017). Parallel non-divergent flow accumulation for trillion cell digital elevation models on desktops or clusters. Environmental Modelling & Software, 92, 202-212. https://doi.org/10.1016/j.envsoft.2017.02.022
  • Çarkacı D. A., Balta Ç., & Karadavut U. (2013). Ulusal çölleşme ve erozyon araştırma merkezi. Ulusal Kop Bölgesel Kalkınma Sempozyumu. Konya, Türkiye.
  • Cordonnier, G., Bovy, B., & Braun, J. (2019). A versatile, linear complexity algorithm for flow routing in topographies with depressions. Earth Surface Dynamics, 7(2), 549-562. https://doi.org/10.5194/esurf-7-549-2019
  • Corine. (2018). Corine. Erişildi 10 Ağustos, 2024 https://doi.org/10.2909/71c95a07-e296-44fc-b22b-415f42acfdf0
  • Görcelioğlu, E. (1995). Havzalarda orman ve otlak alanları amenajmanının su verimine ve kalitesine etkileri üzerine bazı açıklamalar. İstanbul Üniversitesi Orman Fakültesi Dergisi, 45(1-2), 39-52.
  • Hudson, N. (1995). Soil conservation. B T Batsford.
  • Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric engineering and remote sensing, 54(11), 1593-1600.
  • Kotyra, B., Chabudziński, Ł., & Stpiczyński, P. (2021). High-performance parallel implementations of flow accumulation algorithms for multicore architectures. Computers & Geosciences, 151, 104741. https://doi.org/10.1016/j.cageo.2021.104741
  • Ortega, L., & Rueda, A. (2010). Parallel drainage network computation on CUDA. Computers & Geosciences, 36(2), 171-178. https://doi.org/10.1016/j.cageo.2009.07.005
  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). Revised universal soil loss equation (RUSLE), Journal Soil Water Conservation,46, 30-33.
  • Renard, K. G., & Ferreira, V. A. (1993). RUSLE model description and database sensitivity. Journal of environmental quality, 22(3), 458-466. https://doi.org/10.2134/jeq1993.00472425002200030009x
  • Renard, K. G., Foster, G. R., Yoder, D. C., & McCool, D. K. (1994). RUSLE revisited: Status, questions, answers, and the future. Journal of soil and water conservation, 49(3), 213-220.
  • Renard, K. G. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agricultural Research Service.
  • Şentürk, G. O., Gök, G., & Koçyiğit, H. (2023). Tarımda Karbon Ayak İzi ve İklim Değişikliğine Etkisi. Artvin Çoruh Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 1(1), 12-24.
  • Sten, J., Lilja, H., Hyväluoma, J., Westerholm, J., & Aspnäs, M. (2016). Parallel flow accumulation algorithms for graphical processing units with application to RUSLE model. Computers & Geosciences, 89, 88-95. https://doi.org/10.1016/j.cageo.2016.01.006
  • Wischmeier, W. H., & Smith, D. D. (1958). Rainfall energy and its relationship to soil loss. Eos, Transactions American Geophysical Union, 39(2), 285-291. https://doi.org/10.1029/TR039i002p00285
  • Wischmeier, W. H. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains, Guide for selection of practices for soil and water conservation. United States Government Printing Office.
  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.
  • Wuepper D., Borrelli P., & Robert Finger R. (2020). Countries and the global rate of soil erosion. Nature Sustainability 3, 51–55. https://doi.org/10.1038/s41893-019-0438-4
  • Zhou, G., Wei, H., & Fu, S. (2019). A fast and simple algorithm for calculating flow accumulation matrices from raster digital elevation. Frontiers of Earth Science, 13, 317-326. https://doi.org/10.1007/s11707-018-0725-9
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Doğal Kaynak Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Hakan Yıldız 0000-0002-7627-7503

Erken Görünüm Tarihi 20 Aralık 2024
Yayımlanma Tarihi 20 Aralık 2024
Gönderilme Tarihi 14 Ağustos 2024
Kabul Tarihi 2 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Yıldız, H. (2024). Yıldız Irmağı havzasında eğim dikliği ve uzunluğunun (LS) belirlenmesi. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 6(2), 93-99. https://doi.org/10.56130/tucbis.1532824

-