Araştırma Makalesi
BibTex RIS Kaynak Göster

EXPERIMENTAL INVESTIGATION OF PARAMETERS AFFECTING EFFICIENCY IN PHOTOVOLTAIC SYSTEMS

Yıl 2025, Cilt: 26 Sayı: 1, 17 - 32, 29.06.2025

Öz

Today, the search for green energy to meet the never-ending demand for energy, rather than depleting conventional resources, is still ongoing. However, the steady increase in the contribution of solar energy to electricity generation over the last three decades has put solar energy on the agenda as a viable option. However, the power generated by photovoltaic (PV) systems is low due to low conversion efficiency. Therefore, some critical analyses need to be carried out on the factors that improve the efficiency of the photovoltaic system. The output power generated by a photovoltaic panel depends on many factors. Some of these factors are type of photovoltaic material, intensity of received solar radiation, panel temperature, clouds and other shading effects, inverter efficiency, dust pollution factor, panel orientation and tilt angle, weather conditions, geographical location, cable thickness. In the article, solar radiation, shading and tilt angle factors, which significantly affect the performance of photovoltaic systems, will be experimentally investigated.

Etik Beyan

This study was funded by Trakya University Scientific Research Projects Unit (TÜBAP) with Student Scientific Research Support (Project No: TÜBAP-2024/202).

Destekleyen Kurum

Trakya University Scientific Research Projects Unit (TÜBAP)

Proje Numarası

2024/202

Teşekkür

We would like to thank the Rectorate of Trakya University for their financial support.

Kaynakça

  • Afzaal, M., & O'Brien, P. (2006). Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. J Mater Chem, 17.
  • Al-Turjman, F., Qadir, Z., Abujubbeh, M., & Batunlu, C. (2020). Feasibility analysis of solar photovoltaic-wind hybrid energy system for household applications. Comput Electr Eng, 86. https://doi.org/10.1016/j.compeleceng.2020.10674
  • Cabrera-Tobar, A., Bullich-Massagué, E., Aragüés-Penalba, M., & Gomis-Bellmunt, O. (2016). Topologies for large scale photovoltaic power plants. Renew Sustain Energy, 59, 309–319. https://doi.org/10.1016/j.rser.2015.12.362
  • Cooper, P. I. (1969). The absorption of radiation in solar stills. Solar Energy, 12(3), 333–346. https://doi.org/10.1016/0038-092x(69)90047-4
  • Dahlioui, D., Laarabi, B., & Barhdadi, A. (2022). Review on dew water effect on soiling of solar panels: towards its enhancement or mitigation. Sustain Energy Technol Assessments, 49, 101774. https://doi.org/10.1016/j.seta.2021.101774
  • Dewi, T., Risma, P., Oktarina, Y., Roseno, M. T., Yudha, H. M., Handayani, A. S., & Wijanarko, Y. (2016). A survey on solar cell; The role of solar cell in robotics and robotics application in solar cell industry. Proc Forum in Research, Science, and Technology FIRST, C19–C22.
  • Dewi, T., Risma, P., & Oktarina, Y. (2019). Review of factors affecting the efficiency and output of a PV system applied in tropical climate. IOP Conference Series: Earth and Environmental Science, 258, 012039.
  • Dolara, A., Lazaroiu, G. C., Leva, S., & Manzolini, G. (2013). Experimental investigation of partial shading scenarios on 2013.
  • Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world – A review. Energy Procedia, 33, 311–321.
  • Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118671603
  • Gan, C. K., Lee, Y. M., Pudjianto, D., & Strbac, G. (2014). Role of losses in design of DC cable for solar PV applications. 2014 Australasian University Power Engineering Conference, AUPEC 2014 - Proceedings, (October), 2–6.
  • Ghenai, C., Ahmad, F. F., Rejeb, O., & Hamid, A. K. (2021). Sensitivity analysis of design parameters and power gain correlations of bi-facial solar PV system using response surface methodology. Solar Energy, 223(April), 44–53. https://doi.org/10.1016/j.solener.2021.05.024
  • Grygiel, P., Tarłowski, J., Prześniak-Welenc, M., Łapiński, M., Łubiński, J., Mielewczyk-Gryń, A., et al. (2021). Prototype design and development of low-load-roof photovoltaic modules for applications in on-grid systems. Solar Energy Materials and Solar Cells, 233, 111384. https://doi.org/10.1016/j.solmat.2021.111384
  • Gostein, M., Littmann, B., Caron, J. R., & Dunn, L. Comparing PV power plant soiling measurements extracted from PV module irradiance and power measurements. Conference Proceedings, 3004–3009. https://doi.org/10.1109/PVSC.2013.6745094
  • IEA - International Energy Agency. (2018). Energy Efficiency 2018: Analysis and Outlooks to 2040. In: Market Report Series, IEA/OECD.
  • Ingarao, G.
  • Jang, J., & Lee, K. (2020). Practical performance analysis of a bifacial PV module and system. Energies, 13(17), 4389. https://doi.org/10.3390/en13174389
  • Jiang, H., Lu, L., & Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic.
  • Asgharzadeh, A. (2017). Analysis of the impact of installation parameters and system size on bifacial gain and energy yield of PV systems. In: Proceedings of the IEEE 44th Photovoltaic Specialist Conference, 3333–3338. https://doi.org/10.1109/pvsc.2017.8366690
  • Asgharzadeh, A., Marion, B., Deline, C., Hansen, C., Stein, J. S., & Toor, F. (2018). A sensitivity study of the impact of installation parameters and system configuration on the performance of bifacial PV arrays. IEEE J Photovoltaics, 8(3), 798–805. https://doi.org/10.1109/JPHOTOV.2018.2819676
  • Barbón, A., Ghodbane, M., Bayón, L., & Said, Z. (2022). A general algorithm for the optimization of photovoltaic modules layout on irregular rooftop shapes. Journal of Cleaner Production, 365, 132774. https://doi.org/10.1016/j.jclepro.2022.132774
  • Browne, M. C., Norton, B., & McCormack, S. J. (2016). Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy, 133, 533–548. https://doi.org/10.1016/j.solener.2016.04.024
  • Bushong, S. (2016). Advantages and disadvantages of a solar tracker system. Solar Power World, 2016.

FOTOVOLTAİK SİSTEMLERDE VERİMİ ETKİLEYEN PARAMETRELERİN DENEYSEL OLARAK İNCELENMESİ

Yıl 2025, Cilt: 26 Sayı: 1, 17 - 32, 29.06.2025

Öz

Günümüzde, tükenmekte olan konvansiyonel kaynakların yerine sonsuz enerji talebini karşılayacak yeşil enerji arayışı hala devam etmektedir. Ancak son otuz yıldır güneş enerjisinin elektrik enerjisi üretimine katkısındaki istikrarlı büyüme, güneş enerjisini uygulanabilir bir seçenek olarak gündeme getirmektedir. Ancak, düşük dönüşüm verimliliği nedeniyle fotovoltaik (PV) sistemlerden elde edilen güç düşüktür. Bu nedenle, güneş PV sisteminin verimliliğini artıran faktörler üzerinde bazı kritik analizlerin yapılması gerekmektedir. Bir fotovoltaik panel tarafından üretilen çıkış gücü birçok faktöre bağlıdır. Bu faktörlerden bazıları, fotovoltaik malzemesinin türü, alınan güneş ışınımının yoğunluğu, panel sıcaklığı, bulut ve diğer gölgeleme etkileri, invertör verimliliği, toz-kirlilik faktörü, panel oryantasyonu ve eğim açısı, hava koşulları, coğrafi konum, kablo kalınlığıdır. Çalışmada, fotovoltaik sistemlerinin performansını önemli ölçüde etkileyen güneş ışınımı, gölgeleme, eğim açısı faktörleri deneysel olarak incelenmiştir.

Etik Beyan

Bu çalışma, Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP) tarafından Öğrenci Bilimsel Araştırma Desteği ile finanse edilmiştir (Proje No: TÜBAP-2024/202).

Destekleyen Kurum

Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP)

Proje Numarası

2024/202

Teşekkür

Trakya Üniversitesi Rektörlüğüne mali desteklerinden dolayı teşekkürlerimizi sunarız.

Kaynakça

  • Afzaal, M., & O'Brien, P. (2006). Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. J Mater Chem, 17.
  • Al-Turjman, F., Qadir, Z., Abujubbeh, M., & Batunlu, C. (2020). Feasibility analysis of solar photovoltaic-wind hybrid energy system for household applications. Comput Electr Eng, 86. https://doi.org/10.1016/j.compeleceng.2020.10674
  • Cabrera-Tobar, A., Bullich-Massagué, E., Aragüés-Penalba, M., & Gomis-Bellmunt, O. (2016). Topologies for large scale photovoltaic power plants. Renew Sustain Energy, 59, 309–319. https://doi.org/10.1016/j.rser.2015.12.362
  • Cooper, P. I. (1969). The absorption of radiation in solar stills. Solar Energy, 12(3), 333–346. https://doi.org/10.1016/0038-092x(69)90047-4
  • Dahlioui, D., Laarabi, B., & Barhdadi, A. (2022). Review on dew water effect on soiling of solar panels: towards its enhancement or mitigation. Sustain Energy Technol Assessments, 49, 101774. https://doi.org/10.1016/j.seta.2021.101774
  • Dewi, T., Risma, P., Oktarina, Y., Roseno, M. T., Yudha, H. M., Handayani, A. S., & Wijanarko, Y. (2016). A survey on solar cell; The role of solar cell in robotics and robotics application in solar cell industry. Proc Forum in Research, Science, and Technology FIRST, C19–C22.
  • Dewi, T., Risma, P., & Oktarina, Y. (2019). Review of factors affecting the efficiency and output of a PV system applied in tropical climate. IOP Conference Series: Earth and Environmental Science, 258, 012039.
  • Dolara, A., Lazaroiu, G. C., Leva, S., & Manzolini, G. (2013). Experimental investigation of partial shading scenarios on 2013.
  • Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world – A review. Energy Procedia, 33, 311–321.
  • Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118671603
  • Gan, C. K., Lee, Y. M., Pudjianto, D., & Strbac, G. (2014). Role of losses in design of DC cable for solar PV applications. 2014 Australasian University Power Engineering Conference, AUPEC 2014 - Proceedings, (October), 2–6.
  • Ghenai, C., Ahmad, F. F., Rejeb, O., & Hamid, A. K. (2021). Sensitivity analysis of design parameters and power gain correlations of bi-facial solar PV system using response surface methodology. Solar Energy, 223(April), 44–53. https://doi.org/10.1016/j.solener.2021.05.024
  • Grygiel, P., Tarłowski, J., Prześniak-Welenc, M., Łapiński, M., Łubiński, J., Mielewczyk-Gryń, A., et al. (2021). Prototype design and development of low-load-roof photovoltaic modules for applications in on-grid systems. Solar Energy Materials and Solar Cells, 233, 111384. https://doi.org/10.1016/j.solmat.2021.111384
  • Gostein, M., Littmann, B., Caron, J. R., & Dunn, L. Comparing PV power plant soiling measurements extracted from PV module irradiance and power measurements. Conference Proceedings, 3004–3009. https://doi.org/10.1109/PVSC.2013.6745094
  • IEA - International Energy Agency. (2018). Energy Efficiency 2018: Analysis and Outlooks to 2040. In: Market Report Series, IEA/OECD.
  • Ingarao, G.
  • Jang, J., & Lee, K. (2020). Practical performance analysis of a bifacial PV module and system. Energies, 13(17), 4389. https://doi.org/10.3390/en13174389
  • Jiang, H., Lu, L., & Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic.
  • Asgharzadeh, A. (2017). Analysis of the impact of installation parameters and system size on bifacial gain and energy yield of PV systems. In: Proceedings of the IEEE 44th Photovoltaic Specialist Conference, 3333–3338. https://doi.org/10.1109/pvsc.2017.8366690
  • Asgharzadeh, A., Marion, B., Deline, C., Hansen, C., Stein, J. S., & Toor, F. (2018). A sensitivity study of the impact of installation parameters and system configuration on the performance of bifacial PV arrays. IEEE J Photovoltaics, 8(3), 798–805. https://doi.org/10.1109/JPHOTOV.2018.2819676
  • Barbón, A., Ghodbane, M., Bayón, L., & Said, Z. (2022). A general algorithm for the optimization of photovoltaic modules layout on irregular rooftop shapes. Journal of Cleaner Production, 365, 132774. https://doi.org/10.1016/j.jclepro.2022.132774
  • Browne, M. C., Norton, B., & McCormack, S. J. (2016). Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy, 133, 533–548. https://doi.org/10.1016/j.solener.2016.04.024
  • Bushong, S. (2016). Advantages and disadvantages of a solar tracker system. Solar Power World, 2016.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makalesi
Yazarlar

Hacer Akhan 0000-0002-7896-6441

Enes İsmet Ezik 0009-0002-2973-3251

Sefa Emirali 0009-0009-4165-2121

Proje Numarası 2024/202
Gönderilme Tarihi 18 Mayıs 2025
Kabul Tarihi 3 Haziran 2025
Erken Görünüm Tarihi 29 Haziran 2025
Yayımlanma Tarihi 29 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 1

Kaynak Göster

IEEE H. Akhan, E. İ. Ezik, ve S. Emirali, “FOTOVOLTAİK SİSTEMLERDE VERİMİ ETKİLEYEN PARAMETRELERİN DENEYSEL OLARAK İNCELENMESİ”, TUJES, c. 26, sy. 1, ss. 17–32, 2025.