Araştırma Makalesi
BibTex RIS Kaynak Göster

Düzensiz Dielektriklerin Tünelleme İletkenliği

Yıl 2025, Cilt: 26 Sayı: 2, 103 - 110, 31.12.2025
https://doi.org/10.59314/tujes.1762046

Öz

Polimerler gibi düzensiz dielektrik malzemeler, yapısal homojen olmamaları nedeniyle elektron lokalizasyonunun baskın olduğu yük taşınımı sergiler. Geleneksel sızma teorisi, bu sistemlerdeki iletkenliği tanımlamak için yaygın olarak kullanılmıştır; ancak genellikle kuantum mekaniksel süreçleri göz ardı eder. Bu çalışma, kuantum prensiplerine dayanan ve lokalize durumlar arasındaki mikroskobik elektron transferini gözlemlenen makroskobik elektriksel davranışa bağlayan bir tünelleme iletkenliği modeli sunmaktadır. Bu yaklaşım, kısa merkezler arası mesafelerde karakteristik tünelleme parametrelerindeki azalmayı doğru bir şekilde yakalayarak ve böylece teorik tahminleri deneysel sonuçlarla uyumlu hale getirerek katkılı yarı iletken sistemlerdeki uzun süredir devam eden tutarsızlıkları ele almaktadır.
Deneysel doğrulama, polietilen (PE) ve polivinilkarbazol (PVC) içine oksijen iyon implantasyonu yoluyla elde edilmiş olup, burada kusurların eklenmesinin tünelleme kaynaklı iletkenliği doğrudan artırdığı gösterilmiştir. Basınca bağlı ek ölçümler, direnç ile uygulanan basıncın karekökü arasında logaritmik bir ilişki olduğunu ortaya koyarak, modelin gerilim modülasyonlu tünelleme yolları tanımını desteklemektedir. Amorf yarı iletkenler ve düşük moleküler ağırlıklı dielektrikler ile yapılan karşılaştırmalı analiz, modelin çeşitli düzensiz sistemlerde geniş uygulanabilirliğini daha da ortaya koymaktadır.
Bu çalışma, fenomenolojik tanımlamaların ötesine geçerek, düzensiz dielektriklerde iletkenliği anlamak ve tahmin etmek için kuantum mekanik bir çerçeve sunmakta ve gelişmiş polimer bazlı yalıtım malzemelerinin tasarımı için değerli bilgiler sunmaktadır.

Destekleyen Kurum

Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.

Kaynakça

  • Akamatu, H., & Inokuchi, H. (1950). On the electrical conductivity of violanthrone, iso‐violanthrone, and pyranthrone. The Journal of chemical physics, 18(6), 810–811.
  • Aliyev(Alisoy), H. Z. K., Muhammet; Herdem, Saadettin; Özbey, Necati (1997). Kuvvetli elektrik alanların dielektriklerin elektriksel iletkenligine etkisi. ELMEKSEM97 IV. Elektromekanik Semp., Bursa, 17-21 Aralık 1997, Pages: 139-141.
  • Arjmandi, S. K., Khademzadeh Yeganeh, J., Zare, Y., & Rhee, K. Y. (2023). Development of Kovacs model for electrical conductivity of carbon nanofiber–polymer systems. Scientific reports, 13(1), 7.
  • Bässler, H. (1993). Charge transport in disordered organic photoconductors. A Monte Carlo simulation study. Physica Status Solidi B (Basic Research);(Germany), 175(1).
  • Berg, C. F., & Sahimi, M. (2023). Percolation and conductivity in evolving disordered media. Physical Review E, 108(2), 024132.
  • Cuenca-Gotor, V. P., Sans, J. Á., Gomis, O., Mujica, A., Radescu, S., Muñoz, A., Rodríguez-Hernández, P., Da Silva, E. L., Popescu, C., & Ibañez, J. (2020). Orpiment under compression: metavalent bonding at high pressure. Physical Chemistry Chemical Physics, 22(6), 3352–3369.
  • Dyre, J. C., & Schrøder, T. B. (2000). Universality of ac conduction in disordered solids. Reviews of Modern Physics, 72(3), 873.
  • Fabrikant, I. I., & Gallup, G. A. (2009). Semiclassical propagation method for tunneling ionization. Physical Review A—Atomic, Molecular, and Optical Physics, 79(1), 013406.
  • Fu, R. K., Cheung, I., Mei, Y., Shek, C., Siu, G., Chu, P. K., Yang, W., Leng, Y., Huang, Y., & Tian, X. (2005). Surface modification of polymeric materials by plasma immersion ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 237(1-2), 417–421.
  • Gomi, T., Hirose, Y., Kurosu, T., Shiraishi, T., Iida, M., Gekka, Y., & Kunioka, A. (1980). Electrical and optical properties of chalcogenide amorphous semiconductors modified with Ni. Journal of Non- Crystalline Solids, 41(1), 37–46.
  • Ilyasly, T., Gahramanova, G., Abbasova, R., Veysova, S., & Ismailov, Z. (2021). Investigation of the electrical properties of glasses of Tm-As-S and Tm- As-Se systems. New Materials, Compounds and Applications, 5(3), 227-233.
  • Iurov, A., Zhemchuzhna, L., Gumbs, G., & Huang, D. (2023). Application of the WKB theory to investigate electron tunneling in Kek-Y graphene. Applied Sciences, 13(10), 6095.
  • Liu, H., Wang, J., Zhang, G., Han, Y., Wu, B., & Gao, C. (2021). Pressure effects on the metallization and dielectric properties of GaP. Physical Chemistry Chemical Physics, 23(47), 26829–26836.
  • Lomov, S. V., Gudkov, N. A., & Abaimov, S. G. (2022). Uncertainties in electric circuit analysis of anisotropic electrical conductivity and piezoresistivity of carbon nanotube nanocomposites. Polymers, 14(22), 4794.
  • Matsui, H. (2022). Lorentzian path integral for quantum tunneling and WKB approximation for wave-function. The European Physical Journal C, 82(5), 426.
  • Mazurek, H., Day, D. R., Maby, E. W., & Abel, J. S. (1985). Conductive polymers formed by ion implantation. In: Google Patents.
  • Phillips, P. (1986). Tunneling conduction in disordered dissipative systems. The Journal of chemical physics, 84(2), 976–985.
  • Pope, M., & Swenberg, C. E. (1999). Electronic processes in organic crystals and polymers. Oxford University Press.
  • Sheng, P. (1980). Fluctuation-induced tunneling conduction in disordered materials. Physical Review B, 21(6), 2180.
  • Shklovskii, B. I., & Efros, A. L. (2013). Electronic properties of doped semiconductors (Vol. 45). Springer Science & Business Media.
  • Soukoulis, C., & Economou, E. (1999). Electronic localization in disordered systems. Waves in Random Media, 9(2), 255.
  • Stein, R. M., & Stewart, M. (2020). The effect of strain on tunnel barrier height in silicon quantum devices. Journal of applied physics, 128(2).
  • Vanicek, J. J. L. (2003). Uniform semiclassical methods and their applications. Harvard University.
  • Vannikov, A. V., & Grishina, A. D. (1989). Electrontransfer reactions in polymer matrices. Russian Chemical Reviews, 58(12), 1169.

Tunneling Conductivity of Disordered Dielectrics

Yıl 2025, Cilt: 26 Sayı: 2, 103 - 110, 31.12.2025
https://doi.org/10.59314/tujes.1762046

Öz

Disordered dielectric materials, such as polymers, exhibit charge transport dominated by electron localization due to their structural inhomogeneity. Traditional percolation theory has been widely used to describe conductivity in these systems; however, it often overlooks the quantum mechanical processes at play. This study presents a tunneling conductivity model grounded in quantum principles, linking microscopic electron transfer between localized states to the observed macroscopic electrical behavior. The approach addresses longstanding discrepancies in doped semiconductor systems by accurately capturing the reduction in characteristic tunneling parameters at short inter-center distances, thus aligning theoretical predictions with experimental results.
Experimental validation is achieved through oxygen ion implantation in polyethylene (PE) and polyvinylcarbazole (PVC), where the introduction of defects is shown to directly enhance tunneling-driven conductivity. Additional pressure-dependent measurements reveal a logarithmic relationship between resistance and the square root of applied pressure, supporting the model’s description of strain-modulated tunneling pathways. Comparative analysis with amorphous semiconductors and low-molecular-weight dielectrics further demonstrates the model’s broad applicability across various disordered systems.
By moving beyond phenomenological descriptions, this work provides a quantum mechanical framework for understanding and predicting conductivity in disordered dielectrics, offering valuable insights for the design of advanced polymer-based insulating materials.

Kaynakça

  • Akamatu, H., & Inokuchi, H. (1950). On the electrical conductivity of violanthrone, iso‐violanthrone, and pyranthrone. The Journal of chemical physics, 18(6), 810–811.
  • Aliyev(Alisoy), H. Z. K., Muhammet; Herdem, Saadettin; Özbey, Necati (1997). Kuvvetli elektrik alanların dielektriklerin elektriksel iletkenligine etkisi. ELMEKSEM97 IV. Elektromekanik Semp., Bursa, 17-21 Aralık 1997, Pages: 139-141.
  • Arjmandi, S. K., Khademzadeh Yeganeh, J., Zare, Y., & Rhee, K. Y. (2023). Development of Kovacs model for electrical conductivity of carbon nanofiber–polymer systems. Scientific reports, 13(1), 7.
  • Bässler, H. (1993). Charge transport in disordered organic photoconductors. A Monte Carlo simulation study. Physica Status Solidi B (Basic Research);(Germany), 175(1).
  • Berg, C. F., & Sahimi, M. (2023). Percolation and conductivity in evolving disordered media. Physical Review E, 108(2), 024132.
  • Cuenca-Gotor, V. P., Sans, J. Á., Gomis, O., Mujica, A., Radescu, S., Muñoz, A., Rodríguez-Hernández, P., Da Silva, E. L., Popescu, C., & Ibañez, J. (2020). Orpiment under compression: metavalent bonding at high pressure. Physical Chemistry Chemical Physics, 22(6), 3352–3369.
  • Dyre, J. C., & Schrøder, T. B. (2000). Universality of ac conduction in disordered solids. Reviews of Modern Physics, 72(3), 873.
  • Fabrikant, I. I., & Gallup, G. A. (2009). Semiclassical propagation method for tunneling ionization. Physical Review A—Atomic, Molecular, and Optical Physics, 79(1), 013406.
  • Fu, R. K., Cheung, I., Mei, Y., Shek, C., Siu, G., Chu, P. K., Yang, W., Leng, Y., Huang, Y., & Tian, X. (2005). Surface modification of polymeric materials by plasma immersion ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 237(1-2), 417–421.
  • Gomi, T., Hirose, Y., Kurosu, T., Shiraishi, T., Iida, M., Gekka, Y., & Kunioka, A. (1980). Electrical and optical properties of chalcogenide amorphous semiconductors modified with Ni. Journal of Non- Crystalline Solids, 41(1), 37–46.
  • Ilyasly, T., Gahramanova, G., Abbasova, R., Veysova, S., & Ismailov, Z. (2021). Investigation of the electrical properties of glasses of Tm-As-S and Tm- As-Se systems. New Materials, Compounds and Applications, 5(3), 227-233.
  • Iurov, A., Zhemchuzhna, L., Gumbs, G., & Huang, D. (2023). Application of the WKB theory to investigate electron tunneling in Kek-Y graphene. Applied Sciences, 13(10), 6095.
  • Liu, H., Wang, J., Zhang, G., Han, Y., Wu, B., & Gao, C. (2021). Pressure effects on the metallization and dielectric properties of GaP. Physical Chemistry Chemical Physics, 23(47), 26829–26836.
  • Lomov, S. V., Gudkov, N. A., & Abaimov, S. G. (2022). Uncertainties in electric circuit analysis of anisotropic electrical conductivity and piezoresistivity of carbon nanotube nanocomposites. Polymers, 14(22), 4794.
  • Matsui, H. (2022). Lorentzian path integral for quantum tunneling and WKB approximation for wave-function. The European Physical Journal C, 82(5), 426.
  • Mazurek, H., Day, D. R., Maby, E. W., & Abel, J. S. (1985). Conductive polymers formed by ion implantation. In: Google Patents.
  • Phillips, P. (1986). Tunneling conduction in disordered dissipative systems. The Journal of chemical physics, 84(2), 976–985.
  • Pope, M., & Swenberg, C. E. (1999). Electronic processes in organic crystals and polymers. Oxford University Press.
  • Sheng, P. (1980). Fluctuation-induced tunneling conduction in disordered materials. Physical Review B, 21(6), 2180.
  • Shklovskii, B. I., & Efros, A. L. (2013). Electronic properties of doped semiconductors (Vol. 45). Springer Science & Business Media.
  • Soukoulis, C., & Economou, E. (1999). Electronic localization in disordered systems. Waves in Random Media, 9(2), 255.
  • Stein, R. M., & Stewart, M. (2020). The effect of strain on tunnel barrier height in silicon quantum devices. Journal of applied physics, 128(2).
  • Vanicek, J. J. L. (2003). Uniform semiclassical methods and their applications. Harvard University.
  • Vannikov, A. V., & Grishina, A. D. (1989). Electrontransfer reactions in polymer matrices. Russian Chemical Reviews, 58(12), 1169.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makalesi
Yazarlar

Hafiz Alisoy 0000-0003-4374-9559

Arif Kivanc Ustun 0000-0002-9336-7930

Lütfi Ulusoy 0000-0002-8180-6270

Meltem Apaydın Üstün 0000-0001-9225-9455

Hakan Çanta 0009-0004-2013-1478

Gönderilme Tarihi 10 Ağustos 2025
Kabul Tarihi 12 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 2

Kaynak Göster

IEEE H. Alisoy, A. K. Ustun, L. Ulusoy, M. Apaydın Üstün, ve H. Çanta, “Tunneling Conductivity of Disordered Dielectrics”, TUJES, c. 26, sy. 2, ss. 103–110, 2025, doi: 10.59314/tujes.1762046.