Düzensiz Dielektriklerin Tünelleme İletkenliği
Yıl 2025,
Cilt: 26 Sayı: 2, 103 - 110, 31.12.2025
Hafiz Alisoy
,
Arif Kivanc Ustun
,
Lütfi Ulusoy
,
Meltem Apaydın Üstün
,
Hakan Çanta
Öz
Polimerler gibi düzensiz dielektrik malzemeler, yapısal homojen olmamaları nedeniyle elektron lokalizasyonunun baskın olduğu yük taşınımı sergiler. Geleneksel sızma teorisi, bu sistemlerdeki iletkenliği tanımlamak için yaygın olarak kullanılmıştır; ancak genellikle kuantum mekaniksel süreçleri göz ardı eder. Bu çalışma, kuantum prensiplerine dayanan ve lokalize durumlar arasındaki mikroskobik elektron transferini gözlemlenen makroskobik elektriksel davranışa bağlayan bir tünelleme iletkenliği modeli sunmaktadır. Bu yaklaşım, kısa merkezler arası mesafelerde karakteristik tünelleme parametrelerindeki azalmayı doğru bir şekilde yakalayarak ve böylece teorik tahminleri deneysel sonuçlarla uyumlu hale getirerek katkılı yarı iletken sistemlerdeki uzun süredir devam eden tutarsızlıkları ele almaktadır.
Deneysel doğrulama, polietilen (PE) ve polivinilkarbazol (PVC) içine oksijen iyon implantasyonu yoluyla elde edilmiş olup, burada kusurların eklenmesinin tünelleme kaynaklı iletkenliği doğrudan artırdığı gösterilmiştir. Basınca bağlı ek ölçümler, direnç ile uygulanan basıncın karekökü arasında logaritmik bir ilişki olduğunu ortaya koyarak, modelin gerilim modülasyonlu tünelleme yolları tanımını desteklemektedir. Amorf yarı iletkenler ve düşük moleküler ağırlıklı dielektrikler ile yapılan karşılaştırmalı analiz, modelin çeşitli düzensiz sistemlerde geniş uygulanabilirliğini daha da ortaya koymaktadır.
Bu çalışma, fenomenolojik tanımlamaların ötesine geçerek, düzensiz dielektriklerde iletkenliği anlamak ve tahmin etmek için kuantum mekanik bir çerçeve sunmakta ve gelişmiş polimer bazlı yalıtım malzemelerinin tasarımı için değerli bilgiler sunmaktadır.
Destekleyen Kurum
Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.
Kaynakça
-
Akamatu, H., & Inokuchi, H. (1950). On the electrical
conductivity of violanthrone, iso‐violanthrone, and
pyranthrone. The Journal of chemical physics,
18(6), 810–811.
-
Aliyev(Alisoy), H. Z. K., Muhammet; Herdem,
Saadettin; Özbey, Necati (1997). Kuvvetli elektrik
alanların dielektriklerin elektriksel iletkenligine
etkisi. ELMEKSEM97 IV. Elektromekanik Semp.,
Bursa, 17-21 Aralık 1997, Pages: 139-141.
-
Arjmandi, S. K., Khademzadeh Yeganeh, J., Zare, Y.,
& Rhee, K. Y. (2023). Development of Kovacs
model for electrical conductivity of carbon
nanofiber–polymer systems. Scientific reports,
13(1), 7.
-
Bässler, H. (1993). Charge transport in disordered
organic photoconductors. A Monte Carlo
simulation study. Physica Status Solidi B (Basic
Research);(Germany), 175(1).
-
Berg, C. F., & Sahimi, M. (2023). Percolation and
conductivity in evolving disordered media.
Physical Review E, 108(2), 024132.
-
Cuenca-Gotor, V. P., Sans, J. Á., Gomis, O., Mujica,
A., Radescu, S., Muñoz, A., Rodríguez-Hernández,
P., Da Silva, E. L., Popescu, C., & Ibañez, J. (2020).
Orpiment under compression: metavalent bonding
at high pressure. Physical Chemistry Chemical
Physics, 22(6), 3352–3369.
-
Dyre, J. C., & Schrøder, T. B. (2000). Universality of
ac conduction in disordered solids. Reviews of
Modern Physics, 72(3), 873.
-
Fabrikant, I. I., & Gallup, G. A. (2009). Semiclassical
propagation method for tunneling ionization. Physical Review A—Atomic, Molecular, and
Optical Physics, 79(1), 013406.
-
Fu, R. K., Cheung, I., Mei, Y., Shek, C., Siu, G., Chu,
P. K., Yang, W., Leng, Y., Huang, Y., & Tian, X.
(2005). Surface modification of polymeric
materials by plasma immersion ion implantation.
Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with
Materials and Atoms, 237(1-2), 417–421.
-
Gomi, T., Hirose, Y., Kurosu, T., Shiraishi, T., Iida, M.,
Gekka, Y., & Kunioka, A. (1980). Electrical and
optical properties of chalcogenide amorphous
semiconductors modified with Ni. Journal of Non-
Crystalline Solids, 41(1), 37–46.
-
Ilyasly, T., Gahramanova, G., Abbasova, R., Veysova,
S., & Ismailov, Z. (2021). Investigation of the
electrical properties of glasses of Tm-As-S and Tm-
As-Se systems. New Materials, Compounds and
Applications, 5(3), 227-233.
-
Iurov, A., Zhemchuzhna, L., Gumbs, G., & Huang, D.
(2023). Application of the WKB theory to
investigate electron tunneling in Kek-Y graphene.
Applied Sciences, 13(10), 6095.
-
Liu, H., Wang, J., Zhang, G., Han, Y., Wu, B., & Gao,
C. (2021). Pressure effects on the metallization and
dielectric properties of GaP. Physical Chemistry
Chemical Physics, 23(47), 26829–26836.
-
Lomov, S. V., Gudkov, N. A., & Abaimov, S. G.
(2022). Uncertainties in electric circuit analysis of
anisotropic electrical conductivity and
piezoresistivity of carbon nanotube
nanocomposites. Polymers, 14(22), 4794.
-
Matsui, H. (2022). Lorentzian path integral for
quantum tunneling and WKB approximation for
wave-function. The European Physical Journal C,
82(5), 426.
-
Mazurek, H., Day, D. R., Maby, E. W., & Abel, J. S.
(1985). Conductive polymers formed by ion
implantation. In: Google Patents.
-
Phillips, P. (1986). Tunneling conduction in disordered
dissipative systems. The Journal of chemical
physics, 84(2), 976–985.
-
Pope, M., & Swenberg, C. E. (1999). Electronic
processes in organic crystals and polymers. Oxford
University Press.
-
Sheng, P. (1980). Fluctuation-induced tunneling
conduction in disordered materials. Physical
Review B, 21(6), 2180.
-
Shklovskii, B. I., & Efros, A. L. (2013). Electronic
properties of doped semiconductors (Vol. 45).
Springer Science & Business Media.
-
Soukoulis, C., & Economou, E. (1999). Electronic
localization in disordered systems. Waves in
Random Media, 9(2), 255.
-
Stein, R. M., & Stewart, M. (2020). The effect of strain
on tunnel barrier height in silicon quantum devices.
Journal of applied physics, 128(2).
-
Vanicek, J. J. L. (2003). Uniform semiclassical
methods and their applications. Harvard
University.
-
Vannikov, A. V., & Grishina, A. D. (1989). Electrontransfer
reactions in polymer matrices. Russian
Chemical Reviews, 58(12), 1169.
Tunneling Conductivity of Disordered Dielectrics
Yıl 2025,
Cilt: 26 Sayı: 2, 103 - 110, 31.12.2025
Hafiz Alisoy
,
Arif Kivanc Ustun
,
Lütfi Ulusoy
,
Meltem Apaydın Üstün
,
Hakan Çanta
Öz
Disordered dielectric materials, such as polymers, exhibit charge transport dominated by electron localization due to their structural inhomogeneity. Traditional percolation theory has been widely used to describe conductivity in these systems; however, it often overlooks the quantum mechanical processes at play. This study presents a tunneling conductivity model grounded in quantum principles, linking microscopic electron transfer between localized states to the observed macroscopic electrical behavior. The approach addresses longstanding discrepancies in doped semiconductor systems by accurately capturing the reduction in characteristic tunneling parameters at short inter-center distances, thus aligning theoretical predictions with experimental results.
Experimental validation is achieved through oxygen ion implantation in polyethylene (PE) and polyvinylcarbazole (PVC), where the introduction of defects is shown to directly enhance tunneling-driven conductivity. Additional pressure-dependent measurements reveal a logarithmic relationship between resistance and the square root of applied pressure, supporting the model’s description of strain-modulated tunneling pathways. Comparative analysis with amorphous semiconductors and low-molecular-weight dielectrics further demonstrates the model’s broad applicability across various disordered systems.
By moving beyond phenomenological descriptions, this work provides a quantum mechanical framework for understanding and predicting conductivity in disordered dielectrics, offering valuable insights for the design of advanced polymer-based insulating materials.
Kaynakça
-
Akamatu, H., & Inokuchi, H. (1950). On the electrical
conductivity of violanthrone, iso‐violanthrone, and
pyranthrone. The Journal of chemical physics,
18(6), 810–811.
-
Aliyev(Alisoy), H. Z. K., Muhammet; Herdem,
Saadettin; Özbey, Necati (1997). Kuvvetli elektrik
alanların dielektriklerin elektriksel iletkenligine
etkisi. ELMEKSEM97 IV. Elektromekanik Semp.,
Bursa, 17-21 Aralık 1997, Pages: 139-141.
-
Arjmandi, S. K., Khademzadeh Yeganeh, J., Zare, Y.,
& Rhee, K. Y. (2023). Development of Kovacs
model for electrical conductivity of carbon
nanofiber–polymer systems. Scientific reports,
13(1), 7.
-
Bässler, H. (1993). Charge transport in disordered
organic photoconductors. A Monte Carlo
simulation study. Physica Status Solidi B (Basic
Research);(Germany), 175(1).
-
Berg, C. F., & Sahimi, M. (2023). Percolation and
conductivity in evolving disordered media.
Physical Review E, 108(2), 024132.
-
Cuenca-Gotor, V. P., Sans, J. Á., Gomis, O., Mujica,
A., Radescu, S., Muñoz, A., Rodríguez-Hernández,
P., Da Silva, E. L., Popescu, C., & Ibañez, J. (2020).
Orpiment under compression: metavalent bonding
at high pressure. Physical Chemistry Chemical
Physics, 22(6), 3352–3369.
-
Dyre, J. C., & Schrøder, T. B. (2000). Universality of
ac conduction in disordered solids. Reviews of
Modern Physics, 72(3), 873.
-
Fabrikant, I. I., & Gallup, G. A. (2009). Semiclassical
propagation method for tunneling ionization. Physical Review A—Atomic, Molecular, and
Optical Physics, 79(1), 013406.
-
Fu, R. K., Cheung, I., Mei, Y., Shek, C., Siu, G., Chu,
P. K., Yang, W., Leng, Y., Huang, Y., & Tian, X.
(2005). Surface modification of polymeric
materials by plasma immersion ion implantation.
Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with
Materials and Atoms, 237(1-2), 417–421.
-
Gomi, T., Hirose, Y., Kurosu, T., Shiraishi, T., Iida, M.,
Gekka, Y., & Kunioka, A. (1980). Electrical and
optical properties of chalcogenide amorphous
semiconductors modified with Ni. Journal of Non-
Crystalline Solids, 41(1), 37–46.
-
Ilyasly, T., Gahramanova, G., Abbasova, R., Veysova,
S., & Ismailov, Z. (2021). Investigation of the
electrical properties of glasses of Tm-As-S and Tm-
As-Se systems. New Materials, Compounds and
Applications, 5(3), 227-233.
-
Iurov, A., Zhemchuzhna, L., Gumbs, G., & Huang, D.
(2023). Application of the WKB theory to
investigate electron tunneling in Kek-Y graphene.
Applied Sciences, 13(10), 6095.
-
Liu, H., Wang, J., Zhang, G., Han, Y., Wu, B., & Gao,
C. (2021). Pressure effects on the metallization and
dielectric properties of GaP. Physical Chemistry
Chemical Physics, 23(47), 26829–26836.
-
Lomov, S. V., Gudkov, N. A., & Abaimov, S. G.
(2022). Uncertainties in electric circuit analysis of
anisotropic electrical conductivity and
piezoresistivity of carbon nanotube
nanocomposites. Polymers, 14(22), 4794.
-
Matsui, H. (2022). Lorentzian path integral for
quantum tunneling and WKB approximation for
wave-function. The European Physical Journal C,
82(5), 426.
-
Mazurek, H., Day, D. R., Maby, E. W., & Abel, J. S.
(1985). Conductive polymers formed by ion
implantation. In: Google Patents.
-
Phillips, P. (1986). Tunneling conduction in disordered
dissipative systems. The Journal of chemical
physics, 84(2), 976–985.
-
Pope, M., & Swenberg, C. E. (1999). Electronic
processes in organic crystals and polymers. Oxford
University Press.
-
Sheng, P. (1980). Fluctuation-induced tunneling
conduction in disordered materials. Physical
Review B, 21(6), 2180.
-
Shklovskii, B. I., & Efros, A. L. (2013). Electronic
properties of doped semiconductors (Vol. 45).
Springer Science & Business Media.
-
Soukoulis, C., & Economou, E. (1999). Electronic
localization in disordered systems. Waves in
Random Media, 9(2), 255.
-
Stein, R. M., & Stewart, M. (2020). The effect of strain
on tunnel barrier height in silicon quantum devices.
Journal of applied physics, 128(2).
-
Vanicek, J. J. L. (2003). Uniform semiclassical
methods and their applications. Harvard
University.
-
Vannikov, A. V., & Grishina, A. D. (1989). Electrontransfer
reactions in polymer matrices. Russian
Chemical Reviews, 58(12), 1169.