Research Article
BibTex RIS Cite
Year 2025, Volume: 5 Issue: 1, 12 - 28, 25.03.2025
https://doi.org/10.48053/turkgeo.1613103

Abstract

References

  • Abdullah, A. Y., Masrur, A., Sarfaraz, M., & Adnan, G. (2017). Spatio-Temporal Patterns of Land Use / Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sensing, 11(790), 1–26. https://doi.org/10.3390/rs11070790
  • Ahmed A. Zaeen, Khaleel I. Abood, Khalid H. Abbas Al-Aarajy (2024) Supervised Classification Accuracy Assessment Using Remote Sensing and Geographic Information System. TEM Journal 13(1) 396-403
  • Ballanti, L., Blesius, L., Hines, E., & Kruse, B. (2016). Tree Species Classification Using Hyperspectral Imagery : A Comparison of Two Classifiers. Remote Sensing, 8(445), 1–18. https://doi.org/10.3390/rs8060445
  • Breiman, L., Frıedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Tree. Wadsworth & Brooks. Chen, W., Li, X., & Wang, L. (2020). Fine land cover classification in an open pit mining area using optimized support vector machine and world view-3 imagery. Remote Sensing, 12(1), 12–14. https://doi.org/10.3390/RS12010082
  • Cihlar, J. (2000). Land cover mapping of large areas from satellites: Status and research priorities. International Journal of Remote Sensing, 21(6–7), 1093–1114. https://doi.org/10.1080/014311600210092
  • Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? International Journal of Remote Sensing, 29(4), 1185–1206. https://doi.org/10.1080/01431160701294661
  • Friedl, M. A., & Brodley, C. E. (1997). Decision Tree Classification of land cover from remote sensig data. Remote Sens. Envıron., 61, 399–409.
  • Garai, D., & Narayana, A. C. (2018). Land use/land cover changes in the mining area of Godavari coal fields of southern India. Egyptian Journal of Remote Sensing and Space Science, 21(3), 375–381.https://doi.org/10.1016/j.ejrs.2018.01.002
  • Ghayour, L., Neshat, A., Paryani, S., Shahabi, H., Shirzadi, A., Chen, W., Al-Ansari, N., Geertsema, M., Amiri, M. P., Gholamnia, M., Dou, J., & Ahmad, A. (2021). Performance evaluation of sentinel-2 and landsat 8 OLI data for land cover/use classification using a comparison between machine learning algorithms. Remote Sensing, 13(7). https://doi.org/10.3390/rs13071349
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Hong, F., He, G., Wang, G., Zhang, Z., & Peng, Y. (2023). Monitoring of Land Cover and Vegetation Changes in Juhugeng Coal Mining Area Based on Multi-Source Remote Sensing Data. Remote Sensing, 15(13). https://doi.org/10.3390/rs15133439
  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2010). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing ISSN:, 23(4), 725–749. https://doi.org/10.1080/01431160110040323
  • Jayappa, K. S., Mitra, D., & Mishra, A. K. (2006). Coastal geomorphological and land-use and land-cover study of Sagar Island, Bay of Bengal (India) using remotely sensed data. International Journal of Remote Sensing, 27(17), 3671–3682. https://doi.org/10.1080/01431160500500375
  • Karadağ, A. (2006). Linyit işletmeleri ve termik santralin ardından Somada değişen çevre, kent ve kimlik. Ege Coğrafya Dergisi, 15(2006), 31–50.
  • Knorn, J., Rabe, A., Radeloff, V. C., Kuemmerle, T., Kozak, J., & Hostert, P. (2009). Remote Sensing of Environment Land cover mapping of large areas using chain classi fi cation of neighboring Landsat satellite images. Remote Sensing of Environment, 113(5), 957–964. https://doi.org/10.1016/j.rse.2009.01.010
  • Kříbek, B., Nyambe, I., Sracek, O., Mihaljevič, M., & Knésl, I. (2023). Impact of Mining and Ore Processing on Soil, Drainage and Vegetation in the Zambian Copperbelt Mining Districts: A Review. Minerals, 13(3). https://doi.org/10.3390/min13030384
  • Kumar, M., Denis, D. M., Kundu, A., Joshi, N., & Suryavanshi, S. (2022). Understanding land use/land cover and climate change impacts on hydrological components of Usri watershed, India. Applied Water Science, 12(3), 1–14. https://doi.org/10.1007/s13201-021-01547-6
  • Leo Breiman. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1007/978-3-030-62008-0_35
  • Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. (2014). Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Remote Sensing, 6(2), 964–983. https://doi.org/10.3390/rs6020964
  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870. https://doi.org/10.1080/01431160600746456 Mangkhaseum, S., & Hanazawa, A. (2021). Comparison of Machine Learning Classifiers for Land Cover Changes using Google Earth Engine. Proceedings of the 2021 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, ICARES 2021, 1–7. https://doi.org/10.1109/ICARES53960.2021.9665186
  • Manna, A., & Maiti, R. (2014). Opencast Coal Mining Induced Defaced Topography of Raniganj Coalfield in India - Remote Sensing and GIS Based Analysis. Journal of the Indian Society of Remote Sensing, 42(4), 755–764. https://doi.org/10.1007/s12524-014-0363-y
  • Manna, A., & Maiti, R. (2016). Alteration of Surface Water Hydrology by Opencast Mining in the Raniganj Coalfield Area, India. Mine Water and the Environment, 35(2), 156–167. https://doi.org/10.1007/s10230-015-0342-8
  • Mateo-García, G., Gómez-Chova, L., Amorós-López, J., Muñoz-Marí, J., & Camps-Valls, G. (2018). Multitemporal Cloud Masking in the Google Earth Engine. Remote Sensing, 10(1079), 2–18. https://doi.org/10.3390/rs10071079
  • McFEETERS, S. K. (1996). International Journal of Remote Sensing The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
  • Mehta, S. A., Ashish, Solanki, M., & Seth, A. (2024). A Characterization of Land-use Changes in the Proximity of Mining Sites in India. ACM Journal on Computing and Sustainable Societies, 2(1), 1–23. https://doi.org/10.1145/3624774
  • Melgani, F., & Bruzzone, L. (2004a). Classification of Hyperspectral Remote Sensing Image Wıth Support Vector Machines (Vol. 42, Issue August, pp. 1778–1790).
  • Melgani, F., & Bruzzone, L. (2004b). Classification of Hyperspectral Remote Sensing Images With Support Vector Machines. IEEE Transactıons On Geoscıence And Remote Sensıng, 42(8), 1778–1790.
  • Oo, T. K., Arunrat, N., Sereenonchai, S., Ussawarujikulchai, A., Chareonwong, U., & Nutmagul, W. (2022). Comparing Four Machine Learning Algorithms for Land Cover Classification in Gold Mining: A Case Study of Kyaukpahto Gold Mine, Northern Myanmar. Sustainability (Switzerland), 14(17). https://doi.org/10.3390/su141710754
  • Ouma, Y. O., Keitsile, A., Nkwae, B., Odirile, P., Moalafhi, D., & Qi, J. (2023). Urban land-use classification using machine learning classifiers: comparative evaluation and post-classification multi-feature fusion approach. European Journal of Remote Sensing, 56(1). https://doi.org/10.1080/22797254.2023.2173659
  • Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011. https://doi.org/10.1080/01431160512331314083
  • Pande, C. B. (2022). Land use/land cover and change detection mapping in Rahuri watershed area (MS), India using the google earth engine and machine learning approach. Geocarto International, 37(26), 13860–13880. https://doi.org/10.1080/10106049.2022.2086622
  • Paraskevis, N., Servou, A., Roumpos, C., & Pavloudakis, F. (2021). Spatiotemporal interactions between surface coal mining and land cover and use changes. Journal of Sustainable Mining, 20(2), 72–89. https://doi.org/10.46873/2300-3960.1053
  • Praticò, S., Solano, F., Di Fazio, S., & Modica, G. (2021). Machine learning classification of mediterranean forest habitats in google earth engine based on seasonal sentinel-2 time-series and input image composition optimisation. Remote Sensing, 13(4), 1–28. https://doi.org/10.3390/rs13040586
  • Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sensing, 7, 153–168. https://doi.org/10.3390/rs70100153
  • Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78–87. https://doi.org/10.1016/j.isprsjprs.2012.04.001
  • Shi, D., & Yang, X. (2015). Support Vector Machines for Land Cover Mapping from Remote Sensor Imagery. In Monitoring and Modeling of Global Changes: A Geomatics Perspective (pp. 265–279). Springer.
  • Shi, Y., Fan, X., Ding, X., & Sun, M. (2024). An Assessment of Ecological Sensitivity and Landscape Pattern in Abandoned Mining Land. Sustainability (Switzerland), 16(3). https://doi.org/10.3390/su16031105
  • Sierra-Soler, A., Adamowski, J., Qi, Z., Saadat, H., & Pingale, S. (2015). High accuracy Land Use Land Cover (LULC) maps for detecting agricultural drought effects in rainfed agro-ecosystems in central Mexico. Journal of Water and Land Development, 26(1), 19–35. https://doi.org/10.1515/jwld-2015-0014
  • Sridhar, V., Ali, S. A., & Sample, D. J. (2021). Systems analysis of coupled natural and human processes in the mekong river basin. Hydrology, 8(3), 1–20. https://doi.org/10.3390/hydrology8030140
  • Sridhar, V., Kang, H., & Ali, S. A. (2019). Human-induced alterations to land use and climate and their responses for hydrology and water management in the Mekong River Basin. Water (Switzerland), 11(6). https://doi.org/10.3390/w11061307
  • Sujatha, E. R., & Sridhar, V. (2018). Spatial prediction of erosion risk of a small mountainous watershed using RUSLE: A case-study of the palar sub-watershed in Kodaikanal, South India. Water (Switzerland), 10(11), 1–17. https://doi.org/10.3390/w10111608
  • Tadesse, L., Suryabhagavan, K. V., Sridhar, G., & Legesse, G. (2017). Land use and land cover changes and Soil erosion in Yezat Watershed, North Western Ethiopia. International Soil and Water Conservation Research, 5(2), 85–94. https://doi.org/10.1016/j.iswcr.2017.05.004
  • Talukdar, S., Singha, P., Mahato, S., & Pal, S. (2020). Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review.
  • Thanh Noi, P., & Kappas, M. (2018). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors (Basel, Switzerland), 18(1). https://doi.org/10.3390/s18010018
  • Townshend, J. R. G., & Justice, C. O. (2007). International Journal of Remote Sensing Analysis of the dynamics of African vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 7(11), 1435–1445. https://doi.org/10.1080/01431168608948946
  • Tripathi, A. K., Aruna, M., Parida, S., Nandan, D., Elumalai, P. V., Prakash, E., Isaac JoshuaRamesh Lalvani, J. S. C., & Rao, K. S. (2024). Integrated smart dust monitoring and prediction system for surface mine sites using IoT and machine learning techniques. Scientific Reports, 14(1), 1–12. https://doi.org/10.1038/s41598-024-58021-x
  • Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. In Theory of Probability and Its Applications (pp. 264–280). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-21852-6
  • Vorovencii, I. (2024). Long-term land cover changes assessment in the Jiului Valley mining basin in Romania. Frontiers in Environmental Science, 12(January), 1–23. https://doi.org/10.3389/fenvs.2024.1320009
  • Wang, L., Jia, Y., Yao, Y., & Xu, D. (2019). Accuracy assessment of land use classification using support vector machine and neural network for coal mining area of Hegang city, China. Nature Environment and Pollution Technology, 18(1), 335–341.
  • Waske, B., & Braun, M. (2009). Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5), 450–457. https://doi.org/10.1016/j.isprsjprs.2009.01.003
  • Xiao, W., Ren, H., Sui, T., Zhang, H., Zhao, Y., & Hu, Z. (2022a). A drone- and field-based investigation of the land degradation and soil erosion at an opencast coal mine dump after 5 years’ evolution of natural processes. International Journal of Coal Science and Technology, 9(1). https://doi.org/10.1007/s40789-022-00513-0
  • Xiao, Y., Hao, Q., Zhang, Y., Zhu, Y., Yin, S., Qin, L., & Li, X. (2022b). Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Science of the Total Environment, 802, 149909. https://doi.org/10.1016/j.scitotenv.2021.149909
  • Xu, H., & Cheng, W. (2024). Landscape Analysis and Ecological Risk Assessment during 1995–2020 Based on Land Utilization/Land Coverage (LULC) and Random Forest: A Case Study of the Fushun Open-Pit Coal Area in Liaoning, China. Sustainability, 16(6), 2442. https://doi.org/10.3390/su16062442
  • Zha, Y., Gao, J., & Ni, S. (2003). International Journal of Remote Sensing Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.
  • Zhao, Z., Islam, F., Waseem, L. A., Tariq, A., Nawaz, M., Islam, I. U., Bibi, T., Rehman, N. U., Ahmad, W., Aslam, R. W., Raza, D., & Hatamleh, W. A. (2024). Comparison of Three Machine Learning Algorithms Using Google Earth Engine for Land Use Land Cover Classification. Rangeland Ecology and Management, 92, 129–137. https://doi.org/10.1016/j.rama.2023.10.007

Assessment of the Performance of Sentinel-2A MSI and Landsat 9 OLI Images in Land Cover/Use Classification by Comparing Machine Learning Algorithms: A Case Study of Soma District, Türkiye

Year 2025, Volume: 5 Issue: 1, 12 - 28, 25.03.2025
https://doi.org/10.48053/turkgeo.1613103

Abstract

The combination of rapid, uncontrolled population growth and economic and industrial development has significantly accelerated land use/land cover (LULC) changes. Assessing these changes is one of the most effective ways to understand and manage land transformation. The advancement of remote sensing technology and increased accessibility to satellite data have made it more feasible to produce accurate and up-to-date LULC maps through the development of classifier algorithms. This has enabled better assessment and management of ecosystem and land use changes. The main objective of this study is to evaluate the performance of four machine learning algorithms—RF, SVM, CART, and GTB—using Sentinel-2 and Landsat 9 satellite images for the Soma district of Türkiye, on the Google Earth Engine (GEE) platform. In the study, a kernel function was applied to the SVM algorithm. Downloaded satellite images were visually inspected, and Google Earth Pro images were utilized to create training and test samples. Sentinel-2 and Landsat 9 images were classified using these training data and machine learning algorithms on the GEE platform. In the evaluation of the results, an error matrix was generated for the classified images, using the test samples for validation. The evaluation showed that the overall accuracy of the SVM algorithm, using the kernel function, was 92.6% for Sentinel-2 and 87% for Landsat 9, placing it third in terms of accuracy. The GTB algorithm provided the highest overall accuracy, with 94.4% for Sentinel-2 and 88.3% for Landsat 9. The RF algorithm achieved 93.2% accuracy for Sentinel-2 and 87% for Landsat 9, matching the accuracy of SVM for Landsat 9. CART demonstrated the lowest performance, with 86.4% accuracy for Sentinel-2 and 91.4% for Landsat 9. Additionally, Sentinel-2 imagery performed better than Landsat 9 across all algorithms due to its higher spatial resolution and spectral characteristics. This study provides valuable insights for local and provincial planners, authorities, and decision-makers regarding proper land management and the production of reliable LULC maps, especially in mining regions.

Ethical Statement

It has been declared that no conflicts of interest exist

Supporting Institution

The authors declare that no funding was received for this study

References

  • Abdullah, A. Y., Masrur, A., Sarfaraz, M., & Adnan, G. (2017). Spatio-Temporal Patterns of Land Use / Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sensing, 11(790), 1–26. https://doi.org/10.3390/rs11070790
  • Ahmed A. Zaeen, Khaleel I. Abood, Khalid H. Abbas Al-Aarajy (2024) Supervised Classification Accuracy Assessment Using Remote Sensing and Geographic Information System. TEM Journal 13(1) 396-403
  • Ballanti, L., Blesius, L., Hines, E., & Kruse, B. (2016). Tree Species Classification Using Hyperspectral Imagery : A Comparison of Two Classifiers. Remote Sensing, 8(445), 1–18. https://doi.org/10.3390/rs8060445
  • Breiman, L., Frıedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Tree. Wadsworth & Brooks. Chen, W., Li, X., & Wang, L. (2020). Fine land cover classification in an open pit mining area using optimized support vector machine and world view-3 imagery. Remote Sensing, 12(1), 12–14. https://doi.org/10.3390/RS12010082
  • Cihlar, J. (2000). Land cover mapping of large areas from satellites: Status and research priorities. International Journal of Remote Sensing, 21(6–7), 1093–1114. https://doi.org/10.1080/014311600210092
  • Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? International Journal of Remote Sensing, 29(4), 1185–1206. https://doi.org/10.1080/01431160701294661
  • Friedl, M. A., & Brodley, C. E. (1997). Decision Tree Classification of land cover from remote sensig data. Remote Sens. Envıron., 61, 399–409.
  • Garai, D., & Narayana, A. C. (2018). Land use/land cover changes in the mining area of Godavari coal fields of southern India. Egyptian Journal of Remote Sensing and Space Science, 21(3), 375–381.https://doi.org/10.1016/j.ejrs.2018.01.002
  • Ghayour, L., Neshat, A., Paryani, S., Shahabi, H., Shirzadi, A., Chen, W., Al-Ansari, N., Geertsema, M., Amiri, M. P., Gholamnia, M., Dou, J., & Ahmad, A. (2021). Performance evaluation of sentinel-2 and landsat 8 OLI data for land cover/use classification using a comparison between machine learning algorithms. Remote Sensing, 13(7). https://doi.org/10.3390/rs13071349
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Hong, F., He, G., Wang, G., Zhang, Z., & Peng, Y. (2023). Monitoring of Land Cover and Vegetation Changes in Juhugeng Coal Mining Area Based on Multi-Source Remote Sensing Data. Remote Sensing, 15(13). https://doi.org/10.3390/rs15133439
  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2010). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing ISSN:, 23(4), 725–749. https://doi.org/10.1080/01431160110040323
  • Jayappa, K. S., Mitra, D., & Mishra, A. K. (2006). Coastal geomorphological and land-use and land-cover study of Sagar Island, Bay of Bengal (India) using remotely sensed data. International Journal of Remote Sensing, 27(17), 3671–3682. https://doi.org/10.1080/01431160500500375
  • Karadağ, A. (2006). Linyit işletmeleri ve termik santralin ardından Somada değişen çevre, kent ve kimlik. Ege Coğrafya Dergisi, 15(2006), 31–50.
  • Knorn, J., Rabe, A., Radeloff, V. C., Kuemmerle, T., Kozak, J., & Hostert, P. (2009). Remote Sensing of Environment Land cover mapping of large areas using chain classi fi cation of neighboring Landsat satellite images. Remote Sensing of Environment, 113(5), 957–964. https://doi.org/10.1016/j.rse.2009.01.010
  • Kříbek, B., Nyambe, I., Sracek, O., Mihaljevič, M., & Knésl, I. (2023). Impact of Mining and Ore Processing on Soil, Drainage and Vegetation in the Zambian Copperbelt Mining Districts: A Review. Minerals, 13(3). https://doi.org/10.3390/min13030384
  • Kumar, M., Denis, D. M., Kundu, A., Joshi, N., & Suryavanshi, S. (2022). Understanding land use/land cover and climate change impacts on hydrological components of Usri watershed, India. Applied Water Science, 12(3), 1–14. https://doi.org/10.1007/s13201-021-01547-6
  • Leo Breiman. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1007/978-3-030-62008-0_35
  • Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. (2014). Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Remote Sensing, 6(2), 964–983. https://doi.org/10.3390/rs6020964
  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870. https://doi.org/10.1080/01431160600746456 Mangkhaseum, S., & Hanazawa, A. (2021). Comparison of Machine Learning Classifiers for Land Cover Changes using Google Earth Engine. Proceedings of the 2021 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, ICARES 2021, 1–7. https://doi.org/10.1109/ICARES53960.2021.9665186
  • Manna, A., & Maiti, R. (2014). Opencast Coal Mining Induced Defaced Topography of Raniganj Coalfield in India - Remote Sensing and GIS Based Analysis. Journal of the Indian Society of Remote Sensing, 42(4), 755–764. https://doi.org/10.1007/s12524-014-0363-y
  • Manna, A., & Maiti, R. (2016). Alteration of Surface Water Hydrology by Opencast Mining in the Raniganj Coalfield Area, India. Mine Water and the Environment, 35(2), 156–167. https://doi.org/10.1007/s10230-015-0342-8
  • Mateo-García, G., Gómez-Chova, L., Amorós-López, J., Muñoz-Marí, J., & Camps-Valls, G. (2018). Multitemporal Cloud Masking in the Google Earth Engine. Remote Sensing, 10(1079), 2–18. https://doi.org/10.3390/rs10071079
  • McFEETERS, S. K. (1996). International Journal of Remote Sensing The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
  • Mehta, S. A., Ashish, Solanki, M., & Seth, A. (2024). A Characterization of Land-use Changes in the Proximity of Mining Sites in India. ACM Journal on Computing and Sustainable Societies, 2(1), 1–23. https://doi.org/10.1145/3624774
  • Melgani, F., & Bruzzone, L. (2004a). Classification of Hyperspectral Remote Sensing Image Wıth Support Vector Machines (Vol. 42, Issue August, pp. 1778–1790).
  • Melgani, F., & Bruzzone, L. (2004b). Classification of Hyperspectral Remote Sensing Images With Support Vector Machines. IEEE Transactıons On Geoscıence And Remote Sensıng, 42(8), 1778–1790.
  • Oo, T. K., Arunrat, N., Sereenonchai, S., Ussawarujikulchai, A., Chareonwong, U., & Nutmagul, W. (2022). Comparing Four Machine Learning Algorithms for Land Cover Classification in Gold Mining: A Case Study of Kyaukpahto Gold Mine, Northern Myanmar. Sustainability (Switzerland), 14(17). https://doi.org/10.3390/su141710754
  • Ouma, Y. O., Keitsile, A., Nkwae, B., Odirile, P., Moalafhi, D., & Qi, J. (2023). Urban land-use classification using machine learning classifiers: comparative evaluation and post-classification multi-feature fusion approach. European Journal of Remote Sensing, 56(1). https://doi.org/10.1080/22797254.2023.2173659
  • Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011. https://doi.org/10.1080/01431160512331314083
  • Pande, C. B. (2022). Land use/land cover and change detection mapping in Rahuri watershed area (MS), India using the google earth engine and machine learning approach. Geocarto International, 37(26), 13860–13880. https://doi.org/10.1080/10106049.2022.2086622
  • Paraskevis, N., Servou, A., Roumpos, C., & Pavloudakis, F. (2021). Spatiotemporal interactions between surface coal mining and land cover and use changes. Journal of Sustainable Mining, 20(2), 72–89. https://doi.org/10.46873/2300-3960.1053
  • Praticò, S., Solano, F., Di Fazio, S., & Modica, G. (2021). Machine learning classification of mediterranean forest habitats in google earth engine based on seasonal sentinel-2 time-series and input image composition optimisation. Remote Sensing, 13(4), 1–28. https://doi.org/10.3390/rs13040586
  • Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sensing, 7, 153–168. https://doi.org/10.3390/rs70100153
  • Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78–87. https://doi.org/10.1016/j.isprsjprs.2012.04.001
  • Shi, D., & Yang, X. (2015). Support Vector Machines for Land Cover Mapping from Remote Sensor Imagery. In Monitoring and Modeling of Global Changes: A Geomatics Perspective (pp. 265–279). Springer.
  • Shi, Y., Fan, X., Ding, X., & Sun, M. (2024). An Assessment of Ecological Sensitivity and Landscape Pattern in Abandoned Mining Land. Sustainability (Switzerland), 16(3). https://doi.org/10.3390/su16031105
  • Sierra-Soler, A., Adamowski, J., Qi, Z., Saadat, H., & Pingale, S. (2015). High accuracy Land Use Land Cover (LULC) maps for detecting agricultural drought effects in rainfed agro-ecosystems in central Mexico. Journal of Water and Land Development, 26(1), 19–35. https://doi.org/10.1515/jwld-2015-0014
  • Sridhar, V., Ali, S. A., & Sample, D. J. (2021). Systems analysis of coupled natural and human processes in the mekong river basin. Hydrology, 8(3), 1–20. https://doi.org/10.3390/hydrology8030140
  • Sridhar, V., Kang, H., & Ali, S. A. (2019). Human-induced alterations to land use and climate and their responses for hydrology and water management in the Mekong River Basin. Water (Switzerland), 11(6). https://doi.org/10.3390/w11061307
  • Sujatha, E. R., & Sridhar, V. (2018). Spatial prediction of erosion risk of a small mountainous watershed using RUSLE: A case-study of the palar sub-watershed in Kodaikanal, South India. Water (Switzerland), 10(11), 1–17. https://doi.org/10.3390/w10111608
  • Tadesse, L., Suryabhagavan, K. V., Sridhar, G., & Legesse, G. (2017). Land use and land cover changes and Soil erosion in Yezat Watershed, North Western Ethiopia. International Soil and Water Conservation Research, 5(2), 85–94. https://doi.org/10.1016/j.iswcr.2017.05.004
  • Talukdar, S., Singha, P., Mahato, S., & Pal, S. (2020). Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review.
  • Thanh Noi, P., & Kappas, M. (2018). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors (Basel, Switzerland), 18(1). https://doi.org/10.3390/s18010018
  • Townshend, J. R. G., & Justice, C. O. (2007). International Journal of Remote Sensing Analysis of the dynamics of African vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 7(11), 1435–1445. https://doi.org/10.1080/01431168608948946
  • Tripathi, A. K., Aruna, M., Parida, S., Nandan, D., Elumalai, P. V., Prakash, E., Isaac JoshuaRamesh Lalvani, J. S. C., & Rao, K. S. (2024). Integrated smart dust monitoring and prediction system for surface mine sites using IoT and machine learning techniques. Scientific Reports, 14(1), 1–12. https://doi.org/10.1038/s41598-024-58021-x
  • Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. In Theory of Probability and Its Applications (pp. 264–280). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-21852-6
  • Vorovencii, I. (2024). Long-term land cover changes assessment in the Jiului Valley mining basin in Romania. Frontiers in Environmental Science, 12(January), 1–23. https://doi.org/10.3389/fenvs.2024.1320009
  • Wang, L., Jia, Y., Yao, Y., & Xu, D. (2019). Accuracy assessment of land use classification using support vector machine and neural network for coal mining area of Hegang city, China. Nature Environment and Pollution Technology, 18(1), 335–341.
  • Waske, B., & Braun, M. (2009). Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5), 450–457. https://doi.org/10.1016/j.isprsjprs.2009.01.003
  • Xiao, W., Ren, H., Sui, T., Zhang, H., Zhao, Y., & Hu, Z. (2022a). A drone- and field-based investigation of the land degradation and soil erosion at an opencast coal mine dump after 5 years’ evolution of natural processes. International Journal of Coal Science and Technology, 9(1). https://doi.org/10.1007/s40789-022-00513-0
  • Xiao, Y., Hao, Q., Zhang, Y., Zhu, Y., Yin, S., Qin, L., & Li, X. (2022b). Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Science of the Total Environment, 802, 149909. https://doi.org/10.1016/j.scitotenv.2021.149909
  • Xu, H., & Cheng, W. (2024). Landscape Analysis and Ecological Risk Assessment during 1995–2020 Based on Land Utilization/Land Coverage (LULC) and Random Forest: A Case Study of the Fushun Open-Pit Coal Area in Liaoning, China. Sustainability, 16(6), 2442. https://doi.org/10.3390/su16062442
  • Zha, Y., Gao, J., & Ni, S. (2003). International Journal of Remote Sensing Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.
  • Zhao, Z., Islam, F., Waseem, L. A., Tariq, A., Nawaz, M., Islam, I. U., Bibi, T., Rehman, N. U., Ahmad, W., Aslam, R. W., Raza, D., & Hatamleh, W. A. (2024). Comparison of Three Machine Learning Algorithms Using Google Earth Engine for Land Use Land Cover Classification. Rangeland Ecology and Management, 92, 129–137. https://doi.org/10.1016/j.rama.2023.10.007
There are 55 citations in total.

Details

Primary Language English
Subjects Land Management
Journal Section Research Articles
Authors

Sajaweddin Sadid 0000-0002-0031-4531

Kaan Kalkan 0000-0002-2732-5425

Publication Date March 25, 2025
Submission Date January 4, 2025
Acceptance Date March 25, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Sadid, S., & Kalkan, K. (2025). Assessment of the Performance of Sentinel-2A MSI and Landsat 9 OLI Images in Land Cover/Use Classification by Comparing Machine Learning Algorithms: A Case Study of Soma District, Türkiye. Turkish Journal of Geosciences, 5(1), 12-28. https://doi.org/10.48053/turkgeo.1613103