Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode
Yıl 2022,
Cilt: 4 Sayı: 2, 88 - 93, 29.12.2022
Fatma Ağın
,
Gökçe Öztürk
,
Dilek Kul
Öz
The expectorant drug guaifenesin (GFN) electroanalytical analysis was performed on boron doped diamond electrode (BDDE) by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV) methods. The results of CV studies indicate that the reaction mechanism of GFN in the oxidation direction on the BDDE is irreversible and diffusion controlled. The linearity ranges are 0.400 ˗ 100 µM and 0.800 ˗ 100 µM for DPV and SWV methods, respectively. Limit of detection (LOD) values are obtained as 1.47 nM for DPV and 2.92 nM for SWV. Quantitative analysis of GFN from the pharmaceuticals was performed with fully validated DPV and SWV methods without any pre-separation. The sensitive methods with good recovery, high precision and accuracy have been developed for the electroanalytical analysis of GFN.
Kaynakça
- [1] H.H. Albrecht, P.V. Dicpinigaitis, E.P. Guenin, Role of guaifenesin in the management of chronic bronchitis and upper respiratory tract infections, Multidiscip. Respir. Med., 12, 2017, 31.
- [2] N. A. El-Maali, Voltammetric analysis of drugs, Bioelectrochemistry, 64, 2004, 99-107.
- [3] A. A. Bankar, S. R. Lokhande, R. Sawant, and A. R. Bhagat, Spectrophotometric estimation of guaifenesin and salbutamol in pure and tablet dosage form by using different methods, Der Pharma Chemica, 5, 2013, 92-97.
- [4] N. C. Patel, D. B. Patel, P. K. Chaudhari, Spectrophotometric estimation of ambroxol hydrochloride, guaifenesin and levosalbutamol sulphatein syrup, AJRC, 6, 2013, 407-414.
- [5] H. Patil, S. Sonawane, P. Gide, Determination of guaifenesin from spiked human plasma using RP-HPLC with UV detection, J. Anal. Chem., 69, 2014, 390-394.
- [6] H. M. Maher, S. M. Al-Taweel, M. M. Alshehri, N. Z. Alzoman, Novel stereoselective high-performance liquid chromatographic method for simultaneous determination of guaifenesin and ketorolac enantiomers in human plasma, chirality, 26, 2014, 629-639.
- [7] O. A. Saleh, A. M. Yehia, A. A.-E. S. El-Azzouny, H. Y. Aboul-Enein, A validated chromatographic method for simultaneous determination of guaifenesin enantiomers and ambroxol HCl in pharmaceutical formulation, RSC Adv., 5, 2015, 93749-93756.
- [8] I. Tapsobab, J. E. Belgaieda, K. Boujlel, Voltammetric assay of guaifenesin in pharmaceutical formulation, J. Pharm. Biomed. Anal., 38, 2005, 162-165.
- [9] M. Hadi, Electrochemical determination of guaifenesin in a pharmaceutical formulation and human urine based on an anodized nanocrystalline graphite-like pyrolytic carbon film electrode, Anal. Methods, 7, 2015, 8778-8785.
- [10] M. B. Gholivand, M. Khodadadian, Simultaneous voltammetric determination of theophylline and guaifenesin using a multiwalled carbon nanotube-ionic liquid modified glassy carbon electrode, Electroanalysis, 26, 2014, 1975-1983.
- [11] M. B. Gholivand, A. Azadbakht, A. Pashabadi, An electrochemical sensor based on carbon nanotube bimetallic Au-Pt inorganic- organic nanofiber hybrid nanocomposite electrode applied for detection of guaifenesin, Electroanalysis, 23, 2011, 2771-2779.
- [12] M. J. Arcos, M. Alonso, M. C. Ortiz, Genetic-algorithm-based potential selection in multivariant voltammetric determination of indomethacin and acemethacin by partial least squares, Electrochim. Acta, 43, 1988, 479-485.
- [13] P. Talay Pınar, Electrochemical behaviour of ofloxacin in pharmaceutical and biological samples using a boron-doped diamond electrode in using anionic surfactant. GU J Sci, 31, 2018, 66-80.
- [14] J. Wang, Electroanalytical techniques in clinical chemistry and laboratory medicine,1988, New York: VCH Publishers.
- [15] P. T., Kissinger, and W. R. Heineman, Laboratory techniques in electroanalytical chemistry. (2nd ed.), 1984, New York: Markel Dekker.
- [16] E., Laviron, L. Roullier, and C. Degrand. A multilayer model for the study of space distributed redox modified redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 112, 1980, 11–23.
- [17] I. R. Berry, and D. Harpaz. Validation of active pharmaceutical ingredients (2nd ed.), 2001, Washington, DC: CRC Press.
- [18] F. Ağın, Voltammetric determination of guaifenesin in pharmaceuticals and urine samples based on poly(bromocresol purple) modified glassy carbon electrode, Current Pharmaceutical Analysis, 16, 2020, 633-639.
- [19] H. Işık, G. Öztürk, F. Ağın, D. Kul, Electroanalytical analysis of guaifenesin on poly(acridine orange) modified glassy carbon electrode and its determination in pharmaceuticals and serum samples, 24, 2021, 376-385.
Yıl 2022,
Cilt: 4 Sayı: 2, 88 - 93, 29.12.2022
Fatma Ağın
,
Gökçe Öztürk
,
Dilek Kul
Kaynakça
- [1] H.H. Albrecht, P.V. Dicpinigaitis, E.P. Guenin, Role of guaifenesin in the management of chronic bronchitis and upper respiratory tract infections, Multidiscip. Respir. Med., 12, 2017, 31.
- [2] N. A. El-Maali, Voltammetric analysis of drugs, Bioelectrochemistry, 64, 2004, 99-107.
- [3] A. A. Bankar, S. R. Lokhande, R. Sawant, and A. R. Bhagat, Spectrophotometric estimation of guaifenesin and salbutamol in pure and tablet dosage form by using different methods, Der Pharma Chemica, 5, 2013, 92-97.
- [4] N. C. Patel, D. B. Patel, P. K. Chaudhari, Spectrophotometric estimation of ambroxol hydrochloride, guaifenesin and levosalbutamol sulphatein syrup, AJRC, 6, 2013, 407-414.
- [5] H. Patil, S. Sonawane, P. Gide, Determination of guaifenesin from spiked human plasma using RP-HPLC with UV detection, J. Anal. Chem., 69, 2014, 390-394.
- [6] H. M. Maher, S. M. Al-Taweel, M. M. Alshehri, N. Z. Alzoman, Novel stereoselective high-performance liquid chromatographic method for simultaneous determination of guaifenesin and ketorolac enantiomers in human plasma, chirality, 26, 2014, 629-639.
- [7] O. A. Saleh, A. M. Yehia, A. A.-E. S. El-Azzouny, H. Y. Aboul-Enein, A validated chromatographic method for simultaneous determination of guaifenesin enantiomers and ambroxol HCl in pharmaceutical formulation, RSC Adv., 5, 2015, 93749-93756.
- [8] I. Tapsobab, J. E. Belgaieda, K. Boujlel, Voltammetric assay of guaifenesin in pharmaceutical formulation, J. Pharm. Biomed. Anal., 38, 2005, 162-165.
- [9] M. Hadi, Electrochemical determination of guaifenesin in a pharmaceutical formulation and human urine based on an anodized nanocrystalline graphite-like pyrolytic carbon film electrode, Anal. Methods, 7, 2015, 8778-8785.
- [10] M. B. Gholivand, M. Khodadadian, Simultaneous voltammetric determination of theophylline and guaifenesin using a multiwalled carbon nanotube-ionic liquid modified glassy carbon electrode, Electroanalysis, 26, 2014, 1975-1983.
- [11] M. B. Gholivand, A. Azadbakht, A. Pashabadi, An electrochemical sensor based on carbon nanotube bimetallic Au-Pt inorganic- organic nanofiber hybrid nanocomposite electrode applied for detection of guaifenesin, Electroanalysis, 23, 2011, 2771-2779.
- [12] M. J. Arcos, M. Alonso, M. C. Ortiz, Genetic-algorithm-based potential selection in multivariant voltammetric determination of indomethacin and acemethacin by partial least squares, Electrochim. Acta, 43, 1988, 479-485.
- [13] P. Talay Pınar, Electrochemical behaviour of ofloxacin in pharmaceutical and biological samples using a boron-doped diamond electrode in using anionic surfactant. GU J Sci, 31, 2018, 66-80.
- [14] J. Wang, Electroanalytical techniques in clinical chemistry and laboratory medicine,1988, New York: VCH Publishers.
- [15] P. T., Kissinger, and W. R. Heineman, Laboratory techniques in electroanalytical chemistry. (2nd ed.), 1984, New York: Markel Dekker.
- [16] E., Laviron, L. Roullier, and C. Degrand. A multilayer model for the study of space distributed redox modified redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 112, 1980, 11–23.
- [17] I. R. Berry, and D. Harpaz. Validation of active pharmaceutical ingredients (2nd ed.), 2001, Washington, DC: CRC Press.
- [18] F. Ağın, Voltammetric determination of guaifenesin in pharmaceuticals and urine samples based on poly(bromocresol purple) modified glassy carbon electrode, Current Pharmaceutical Analysis, 16, 2020, 633-639.
- [19] H. Işık, G. Öztürk, F. Ağın, D. Kul, Electroanalytical analysis of guaifenesin on poly(acridine orange) modified glassy carbon electrode and its determination in pharmaceuticals and serum samples, 24, 2021, 376-385.