BibTex RIS Cite

The Last Barrier for 00-type interspecific rapeseed (Brassica napus L.): Glucosinolates

Year 2014, Volume: 1 Issue: Özel Sayı-2, 1413 - 1418, 01.03.2014

Abstract

The biggest problem of the use of resynthesised rapeseed forms in quality breeding is their high glucosinolate content arising from the same character originating from the B. oleracea parent. Glucosinolates are sulphur- and nitrogen containing plant secondary matabolites common in the Brassicaceae and related plant families. The hydrolyzed products of glucosinolates, namely, isothiocyanates and other sulphur-containing compounds, were shown to interfere with the uptake of iodine by the thyroid gland, contribute to liver disease, and reduce growth and weight gain in animals. Consequently, plant breeders realized that if rapeseed (Brassica napus L.) meal was to be used in animal feed, the glucosinolate content had to be reduced. Up to now, interspecific rapeseed (Brassica napus L.) hybrids displaying low erucic acid quality were developed. But their glucosinolate content are high because of the B. oleracea parent. To introduce canola quality in RS-lines crosses with adapted material and subsequent backcrosses to resynthesized material are required, followed by recurrent selection for agronomic performance. A second approach should be the reduction of the glucosinolate content of the B. oleracea parent. Possible methods may be the irradiation of B. oleracea seeds or interspecific hybridization of B. oleracea with related Brassica species,because the selection of cabbage genotypes with low glucosinolate content may be the longer and deficienter way. Another method should be the cultivation of the low erucic acid genotypes in vitro since tissue culture cause as well known somaclonal variation, which may led to the breakdown of the high glucosinolate level

References

  • Becker, H.C., Engqvist, G.M., B., Karlsson, B., 1995. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor. Appl. Genet. 91: 62- 67.
  • Burel, C., Boujard, T., Escaffre, A.M., Kaushik, S.J., Boeuf, G., Mol, K.A., Van der Geyten, S., Kuhn, E.R., 2000. Dietary low glucosinolate rapeseed meal affect thyroid status and nutrient utilization in rainbow trout Handbook of Plant Breeding.
  • Girke, A., Becker, H.C., Engqvist, G.M., 2001. Predicting heterosis from genetic distances for RFLP markers in resynthesized oilseed rape. In: quantitative genetics and breeding methods: the way ahead. Proceedings of the 11th Meeting of the Section Biometrics in Plant Breeding. Paris, France, pp. 257–262.
  • Girke, A., Schierholt, A., Becker, H.C., 2011. Extending the rapeseed genepool with resynthesized Brassica napus. II Heterosis. Theor. Appl. Genet. 124: 1017–1027.
  • Iniguez-Luy FL, Federico ML (2011) The genetics of Brassica napus L. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 291– 322.
  • Kebede, B., Thiagarajah, M., Zimmerli, C., Rahmann, M.H., 2010. Improvement of open-pollinated spring rapeseed (Brassica napus L.) through introgression of genetic diversity from winter rapeseed. Crop Sci 50: 1236–1243.
  • Keck, A.S., Finley, J.W., 2004. Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr. Cancer Ther. 3: 5-12.
  • Kermanshahi, H., Abbasi Pour, A.R., 2006. Replacement value of soybean meal with rapeseed meal supplemented with or without a dietary NSP-degrading enzyme on performance, carcass traits and thyroid hormones of broiler chickens. Int. J. Poult. Sci., 5: 925-930.
  • Kirk, J.T.O, Hurlstone, C.J., 1983. Variation and inheritance of erucic acid content in Brassica juncea. Z. Pflanzenzüchtung 90: 331-338.
  • Lukens, L.N., Pires, J.C., Leon, E., Vogelzang, R., Oslach, L., Osborn, T., 2006. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica Physiology. 140: 336-348. Plant
  • Lühs, W., Seyis, F., Voss, A., Friedt, W., 2000. Genetics of erucic acid content in Brassica oleracea seed oil. Czech. J. Genet. Plant Breed. 36: 116-120.
  • Mawson, R., Heaney, R.K., Zdunczyk, Z., Kozlowska, H., 1994a. Rapeseed meal-Glucosinolates and their antinutritional effects. Part 4. Goitrogenicity abnormalities in animals. Die Nahrung. 38: 178-191. organs
  • Mawson, R., Heaney, R.K., Zdunczyk, Z., Kozlowska, H., 1994b. Rapeseed meal-glucosinolates and their antinutritional effects. Part 5. Animal reproduction. Die Nahrung. 38: 588- 598
  • McNeill, L., Bernard, K., MacLeod, M.G., 2004. Food intake, growth rate, food conversion and food choice in broilers fed on diets high in rapeseed meal and pea meal with observations of the resulting poultry meat. Brit. Poultry Sci. 45: 519-523.
  • Morinaga, T., 1933. Interspecific hybridisation in Brassica: 5. The cytology of F1 hybrid of B. carinata and B. alboglabra. Japanese Journal of Botany 6: 467-475.
  • Morinaga, T., 1934. Interspecific hybridisation in Brassica: 6. The cytology of B. juncea and B. nigra. Cytologia 6: 62-67.
  • Qian, W., Li, Q., Noack, J., Sass, O., Meng, J., Frauen, M., Jung, C., 2009. Heterotic patterns in rapeseed (Brassica napus L.): II Crosses between European winter and Chinese semi- winter lines. Plant Breed 128: 466–470.
  • Qiong, H., Yunchang, L., Desheng, M., 2009. Introgression of genes from wild crucifers. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, pp 261– 283.
  • Schöne, F., Groppel, B., Hennig, A., Jahreis, G., 1997. Rapeseed meals, methimazole, thiocyanate and iodine affect growth and thyroid. Investigations into glucosinolate tolerance in the pig. J. Sci. Food Agric. 74: 69-80.
  • Seyis, F., Friedt, W., Voss, A., Lühs, W., 2004. identification of individual Brassica oleracea plants with low erucic acid content. Asian J. Plant Science 3(5): 593-596.
  • Seyis, F., Friedt, W., Lühs, W., 2005. Development of Resynthesized Rapeseed (Brassica napus L.) Forms with Low Erucic Acid Content Through in ovulum Culture. Asian Journal of Plant Sciences 4 (1): 6-10.
  • Seyis, F., Friedt, W., 2010a. Brassica oleracea genotypes displaying interesting fatty acid profiles for Brassica napus breeding. African Journal of Agricultural Research. 5 (23): 3191-3195.
  • Seyis, F. , Kurt, O., Uysal, H., 2010b. Development of resynthesised rapeseed forms with low erucic acid character and their use in hybrid breeding. TUBİTAK TOVAG 104563 Career Project, pp. 58.
  • Sharpe, A.G., Lydiate, D.J., 2003. Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome 46: 461–468.
  • Seyis, F., Friedt, W., Lühs, W., 2006. Yield of Brassica hybrids napus resynthesized rapeseed material sown at different locations. Field Crops Research 96: 176–180. using
  • Snowdon, R.J., 2009. Genome analysis and molecular breeding of Brassica oilseed crops. Habilitationsschrift. Pflanzenzchtung. Justus-Liebig-Universitaet Giessen. İnstitut für
  • Song, K., Lu, P., Tang, K., Osborn, T.C., 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proceedings National Academical Science USA. 92: 7719-7723.
  • Stefansson, B.R., Hougen, F.W., Downey, R.K. 1961. Note on the isolation of rape plants with seed oil free from erucic acid. Can. J. Plant Sci., 41: 218-219.
  • Stefansson, B.R., Hougen, F.W., 1964. Selection of rape plants (Brassica napus) with seed oil practically free from erucic acid. Can. J. Plant Sci., 44: 359-364.
  • Tripathi, M.K., Mishra, A.S., 2007. Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Technol. 132: 1-27
  • U., N., 1935. Genomic analysis of Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japanese Jornal of Botany. 7: 389-452.
  • Udall, J.A., Quijada, P.A., Polewicz, H., Vogelzang, R., Osborn, T.C., 2004. Phenotypic effects of introgressing resynthesized Brassica napus L. germplasm winter and into hybrid spring canola. Crop Sci 44: 1990– 1996.
  • Zou, J., Zhu, J., Huang, S., Tian, E., Xiao, Y., Fu, D., Tu, J., Fu, T., Meng, J., 2010. Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor. Appl. Genet. 120: 283–290.

The Last Barrier for 00-type interspecific rapeseed (Brassica napus L.): Glucosinolates

Year 2014, Volume: 1 Issue: Özel Sayı-2, 1413 - 1418, 01.03.2014

Abstract

Kolza kalite ıslahında türler arası melez formların kullanılmasındaki en büyük problem B. olearacea ebeveyneinden gelen yüksek orandaki glukosinolat özelliğidir. Glikozinolatlar Brassicaceae ve akraba bitki familyalarından yaygın olarak bulunan, sülfür ve azot içeren sekonder metabolitlerdir. Glikosinolatların parçalanma ürünleri olan isotiyosiyanatlar ve diğer sülfür içeren bileşiklerin tiroid bezi vasıtasıyla iyot alımı etkilediği ortaya konmuştur, bu da karaciğer hastalığına katkı yapar ve hayvanlarda canlı ağırlık kaybına sebebiyet vermektedir. Sonuç olarak, hayvan yemi içersinde kolza (Brassica napus L.) küspesi kullanılacaksa, glikosinolat oranının düşürülmesi gerekmektedir. Şimdiye kadar, bitkisel yağ kalitesine sahip türler arası melez kolza (Brassica napus L.) formları geliştirilmiştir. Fakat glikosinolat oranları B. oleracea ebeveyninden dolayı yüksektir. Türler arası melz kolza hatlarına kanola kaliteini aktarabilmek için önce adapte edilmiş kolza materyali ile melezleme ve ileriki aşamalarda verim bakımından tekrarlamalı seleksiyona ihtiyaç vardır. İkinci bir yöntem, B. oleracea ebeveynindeki glikosinolat oranının düşürülmesidir. Muhtemel metodlar, B. oleracea tohumlarının radyasyona tabi tutulması veya B. oleracea ‘nın diğer akraba Brassica formları ile melezlenmesidir, çünkü glikosinolat içeriği düşük lahana formlarının selekte edilmesi daha uzun ve zor yoldur. Diğer bir yöntem, düşük erusik asit içeriğine sahip genotiplerin in vitro olarak kültüre alınmasıdır, çünkü doku kültüründe somaklonal varyasyon oluşmakta, bu da belki glikosinolat seviyesinin kırılmasına sebebiyet verebilecektir

References

  • Becker, H.C., Engqvist, G.M., B., Karlsson, B., 1995. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor. Appl. Genet. 91: 62- 67.
  • Burel, C., Boujard, T., Escaffre, A.M., Kaushik, S.J., Boeuf, G., Mol, K.A., Van der Geyten, S., Kuhn, E.R., 2000. Dietary low glucosinolate rapeseed meal affect thyroid status and nutrient utilization in rainbow trout Handbook of Plant Breeding.
  • Girke, A., Becker, H.C., Engqvist, G.M., 2001. Predicting heterosis from genetic distances for RFLP markers in resynthesized oilseed rape. In: quantitative genetics and breeding methods: the way ahead. Proceedings of the 11th Meeting of the Section Biometrics in Plant Breeding. Paris, France, pp. 257–262.
  • Girke, A., Schierholt, A., Becker, H.C., 2011. Extending the rapeseed genepool with resynthesized Brassica napus. II Heterosis. Theor. Appl. Genet. 124: 1017–1027.
  • Iniguez-Luy FL, Federico ML (2011) The genetics of Brassica napus L. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 291– 322.
  • Kebede, B., Thiagarajah, M., Zimmerli, C., Rahmann, M.H., 2010. Improvement of open-pollinated spring rapeseed (Brassica napus L.) through introgression of genetic diversity from winter rapeseed. Crop Sci 50: 1236–1243.
  • Keck, A.S., Finley, J.W., 2004. Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr. Cancer Ther. 3: 5-12.
  • Kermanshahi, H., Abbasi Pour, A.R., 2006. Replacement value of soybean meal with rapeseed meal supplemented with or without a dietary NSP-degrading enzyme on performance, carcass traits and thyroid hormones of broiler chickens. Int. J. Poult. Sci., 5: 925-930.
  • Kirk, J.T.O, Hurlstone, C.J., 1983. Variation and inheritance of erucic acid content in Brassica juncea. Z. Pflanzenzüchtung 90: 331-338.
  • Lukens, L.N., Pires, J.C., Leon, E., Vogelzang, R., Oslach, L., Osborn, T., 2006. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica Physiology. 140: 336-348. Plant
  • Lühs, W., Seyis, F., Voss, A., Friedt, W., 2000. Genetics of erucic acid content in Brassica oleracea seed oil. Czech. J. Genet. Plant Breed. 36: 116-120.
  • Mawson, R., Heaney, R.K., Zdunczyk, Z., Kozlowska, H., 1994a. Rapeseed meal-Glucosinolates and their antinutritional effects. Part 4. Goitrogenicity abnormalities in animals. Die Nahrung. 38: 178-191. organs
  • Mawson, R., Heaney, R.K., Zdunczyk, Z., Kozlowska, H., 1994b. Rapeseed meal-glucosinolates and their antinutritional effects. Part 5. Animal reproduction. Die Nahrung. 38: 588- 598
  • McNeill, L., Bernard, K., MacLeod, M.G., 2004. Food intake, growth rate, food conversion and food choice in broilers fed on diets high in rapeseed meal and pea meal with observations of the resulting poultry meat. Brit. Poultry Sci. 45: 519-523.
  • Morinaga, T., 1933. Interspecific hybridisation in Brassica: 5. The cytology of F1 hybrid of B. carinata and B. alboglabra. Japanese Journal of Botany 6: 467-475.
  • Morinaga, T., 1934. Interspecific hybridisation in Brassica: 6. The cytology of B. juncea and B. nigra. Cytologia 6: 62-67.
  • Qian, W., Li, Q., Noack, J., Sass, O., Meng, J., Frauen, M., Jung, C., 2009. Heterotic patterns in rapeseed (Brassica napus L.): II Crosses between European winter and Chinese semi- winter lines. Plant Breed 128: 466–470.
  • Qiong, H., Yunchang, L., Desheng, M., 2009. Introgression of genes from wild crucifers. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, pp 261– 283.
  • Schöne, F., Groppel, B., Hennig, A., Jahreis, G., 1997. Rapeseed meals, methimazole, thiocyanate and iodine affect growth and thyroid. Investigations into glucosinolate tolerance in the pig. J. Sci. Food Agric. 74: 69-80.
  • Seyis, F., Friedt, W., Voss, A., Lühs, W., 2004. identification of individual Brassica oleracea plants with low erucic acid content. Asian J. Plant Science 3(5): 593-596.
  • Seyis, F., Friedt, W., Lühs, W., 2005. Development of Resynthesized Rapeseed (Brassica napus L.) Forms with Low Erucic Acid Content Through in ovulum Culture. Asian Journal of Plant Sciences 4 (1): 6-10.
  • Seyis, F., Friedt, W., 2010a. Brassica oleracea genotypes displaying interesting fatty acid profiles for Brassica napus breeding. African Journal of Agricultural Research. 5 (23): 3191-3195.
  • Seyis, F. , Kurt, O., Uysal, H., 2010b. Development of resynthesised rapeseed forms with low erucic acid character and their use in hybrid breeding. TUBİTAK TOVAG 104563 Career Project, pp. 58.
  • Sharpe, A.G., Lydiate, D.J., 2003. Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome 46: 461–468.
  • Seyis, F., Friedt, W., Lühs, W., 2006. Yield of Brassica hybrids napus resynthesized rapeseed material sown at different locations. Field Crops Research 96: 176–180. using
  • Snowdon, R.J., 2009. Genome analysis and molecular breeding of Brassica oilseed crops. Habilitationsschrift. Pflanzenzchtung. Justus-Liebig-Universitaet Giessen. İnstitut für
  • Song, K., Lu, P., Tang, K., Osborn, T.C., 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proceedings National Academical Science USA. 92: 7719-7723.
  • Stefansson, B.R., Hougen, F.W., Downey, R.K. 1961. Note on the isolation of rape plants with seed oil free from erucic acid. Can. J. Plant Sci., 41: 218-219.
  • Stefansson, B.R., Hougen, F.W., 1964. Selection of rape plants (Brassica napus) with seed oil practically free from erucic acid. Can. J. Plant Sci., 44: 359-364.
  • Tripathi, M.K., Mishra, A.S., 2007. Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Technol. 132: 1-27
  • U., N., 1935. Genomic analysis of Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japanese Jornal of Botany. 7: 389-452.
  • Udall, J.A., Quijada, P.A., Polewicz, H., Vogelzang, R., Osborn, T.C., 2004. Phenotypic effects of introgressing resynthesized Brassica napus L. germplasm winter and into hybrid spring canola. Crop Sci 44: 1990– 1996.
  • Zou, J., Zhu, J., Huang, S., Tian, E., Xiao, Y., Fu, D., Tu, J., Fu, T., Meng, J., 2010. Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor. Appl. Genet. 120: 283–290.
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Fatih Seyis This is me

Emine Aydın This is me

Publication Date March 1, 2014
Submission Date January 26, 2015
Published in Issue Year 2014 Volume: 1 Issue: Özel Sayı-2

Cite

APA Seyis, F., & Aydın, E. (2014). The Last Barrier for 00-type interspecific rapeseed (Brassica napus L.): Glucosinolates. Turkish Journal of Agricultural and Natural Sciences, 1(Özel Sayı-2), 1413-1418.