Araştırma Makalesi
BibTex RIS Kaynak Göster

Karışım Ekim Koşullarında Yaygın Fiğ (Vicia Sativa L.) ve Tritikale (Xtriticosecale Wittmack) Bitkisinin Kök Sistemi Etkileşimleri

Yıl 2021, Cilt: 8 Sayı: 3, 857 - 865, 26.07.2021
https://doi.org/10.30910/turkjans.861756

Öz

Karışım ekim, sıraya ekim ve rotasyon, toprak yapısınının iyileştirilmesi ve topraktaki azot durumunu artırmak için yaygın olarak uygulanan en eski üretim tekniklerindendir. Rotasyon, genellikle bir buğdaygil ve baklagil ile iki sezon sürerken, karışım ekim ve sıraya ekim ise bir sezonda yapılabilmektedir. Baklagil bitkilerinin karışım ekimde başlıca avantajları, toprak kaynaklarının sürdürülebilir kullanımı ve azaltılmış girdi maliyeti olarak sıralanabilir. Karışım ve sıraya ekim ile yapılan çalışmalarda, karışım ekimin toprak üstü bitki gelişime olan etkisi bir çok kez araştırılmış, sınırlı sayıda çalışmada ise, kök sistemi etkileşimlerinin incelendiği görülmüştür. Bu çalışmada, fide döneminde adi fiğ (Vicia sativa) x triticale (Xtriticosecale Wittmack) sıraya ekimlerinin detaylı kök sistemi etkileşimlerinin incelenmesi amaçlanmıştır. Çalışmada yarı hidroponik pleksiglas sistemi kullanılmıştır. Tür düzeyinde etkileşim ve rekabeti test etmek için beş farklı karışım oranı belirlenmiştir. Elde edilen sonuçlar, tritikalenin adi fiğ köklerinin gelişimini önemli ölçüde etkilediğini, adi fiğin ise tritikale'yi etkilemediğini göstermektedir. Saçak kök sistemine sahip olan tritikale, adi fiğ ile karşılaştırıldığında kök büyümesinde daha baskın bir gelişim göstermiştir. En iyi kök sistemi gelişiminin (her iki tür için) daha yüksek baklagil oranlarına sahip dozlarda olduğu görülmüştür. Elde edilen sonuçlar, karışım ekimden maksimum kazanç elde etmek için en iyi karışım ve sıraya ekim oranlarının belirlenmesi ve toprak altı etkileşimlerinin önemini vurgulamaktadır.

Kaynakça

  • Abd-El-Samie, F.S. 1994. Growth and yield of maize as affected by N-levels and preceding winter crops. Annals of Agricultural Science, 39(2): 623-631.
  • Abdel Magid, H.M., Ghoneim, M.F., Rabie, R.K. and Sabrah, R.E. 1991. Productivity of wheat and alfalfa under intercropping. Experimental Agriculture, 27(4):391-395.
  • Acar, Z., Önal Aşcı, Ö., Ayan, İ., Mut, H. and Başaran, U. 2006. Intercropping systems for forage crops. Anadolu Journal of Agricultural Sciences, 21(3): 379-386. (In Turkish).
  • Acikbas, S., Ozyazici, M.A. and Bektas, H. 2021. The effect of salinity on root architecture in forage pea (Pisum sativum ssp. arvense L.). Legume Research- An International Journal, 44(4): 407-412.
  • Adiku, S.G.K., Ozier-Lafontaine, H. and Bajazet, T. 2001. Patterns of root growth and water uptake of a maize-cowpea mixture grown under greenhouse conditions. Plant Soil, 235: 85-94.
  • Allen-Perkins, A., Estrada, E. 2019. Mathematical modelling for sustainable aphid control in agriculture via intercropping. Proceedings of the Royal Society A, 475.2226: 20190136.
  • Bargaz, A., Faghire, M., Abdi, N., Farissi, M., Sifi, B., Drevon, J. J. and Ghoulam, C. 2012. Low soil phosphorus availability increases acid phosphatases activities and affects P partitioning in nodules, seeds and rhizosphere of Phaseolus vulgaris. Agriculture, 2(2): 139-153.
  • Bektas, H. 2021. The effect of salt stress on root development and architecture in common grasspea (Lathyrus sativus L.). European Journal of Science and Technology, (23): 793-799.
  • Brooker, R.W., Bennett, A.E., Cong, W.F., Daniell, T.J., George, T.S., Hallett, P.D., Hawes, C., Iannetta, P.P.M., Jones, H.G., Karley, A.J., Li, L., McKenzie, B.M., Pakeman, R.J., Paterson, E., Schöb, C., Shen, J., Squire, G., Watson, C.A., Zhang, C., Zhang, F., Zhang, J. and White, P.J. 2015. Improving intercropping. A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206(1):107-117.
  • Ceritoglu, M., Ceritoglu, F., Erman, M. and Bektas, H. 2020. Root system variation of pulse crops at early vegetative stage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4): 2182-2197.
  • Chen, Y., Ghanem, M.E. and Siddique, K.H.M. 2017. Characterizing root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany, 68(8):1987-1999.
  • Chen, P., Song, C., Liu, X.M., Zhou, L., Yang, H., Zhang, X. and Wang, X.C. 2019. Yield advantage and nitrogen rate in an additive maize-soybean relay intercropping system. Science of the Total Environment, 657: 987-999.
  • Contreras, F., Díaz, J., Rombolà, A.D. and De La Luz Mora, M. 2019. Prospecting intercropping between subterranean clover and grapevine as potential strategy for improve grapevine performance. Current Plant Biology, 19:100110.
  • Corre-Hellou, G. and Crozat, Y. 2005. Assessment of root system dynamics of species grown inmixtures under field conditions using herbicide injection and 15N natural abundance methods: a case study with pea, barley and mustard. Plant Soil, 276(1-2):177-192.
  • Dai, J., Qiu, W., Wang, N., Wang, T., Nakanishi, H. and Zuo, Y.M. 2019. From Leguminosae/Gramineae intercropping systems to see benefits of intercropping on iron nutrition. Frontiers in Plant Science, 10: 605.
  • Deak, A., Hall, M.H., Sanderson, M.A. and Archibadl, D.D. 2007. Production and nutritive value of grazed simple and complex forage mixtures. Agronomy Journal, 99: 814-821.
  • Demiroğlu Topçu, G., Kır, B., Çelen, A. E. and Kavut, Y.T. 2020. Investigations on the Herbage and some other charateristics of common vetch cereal mixtures of different harvest dates. ISPEC Journal of Agricultural Sciences, 4(2): 146-156. (In Turkish).
  • Fan, Z., Zhao, Y., Chai, Q., Zhao, C., Yu, A., Coulter, J.A. and Cao, W. 2019. Synchrony of nitrogen supply and crop demand are driven via high maize density in maize/pea strip intercropping. Scientific Reports, 9(1):1-14.
  • Ghanbari-Banjar, A. and Lee, H.C. 2003. Intercropped wheat (Triticum aestivum L.) and bean (Vicia faba L.) as a whole crop forage: effect of harvest time on forage yield and quality. Grass and Forage Science, 58:28-36.
  • Gregory, P.J., Palta, J.A. and Batts, G.R. 1995. Root systems and root: mass ratio-carbon allocation under current and projected atmospheric conditions in arable crops. Plant Soil, 187(2): 221-228.
  • Gregory, P.J. and Eastham, J. 1996. Growth of shoots and roots, and interception of radiation by wheat and lupin crops on a shallow, duplex soil in response to time of sowing. Australian Journal of Agricultural Research, 47(3):427-447.
  • Haugland, E. and Tawfiq, M. 2001. Root and shoot competition between established grass species and newly sown seedlings during spring growth. Grass and Forage Science, 56(2): 193-199.
  • Hauggaard-Nielsen, H., Ambus, P. and Jensen, E.S. 2001. Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops a field study employing 32P technique. Plant Soil, 236(1):63-74.
  • Horner, A., Browett, S.S. and Antwis, R.E. 2019. Mixed-cropping Between field pea varieties alters root bacterial and fungal communities. Scientific Reports, 9(1): 1-10.
  • Iqbal, M.A., Hamid, A., Ahmad, T., Siddiqui, M.H., Hussain, I., Ali, S. and Ahmad, Z. 2019. Forage sorghum-legumes intercropping: effect on growth, yields, nutritional quality and economic returns. Bragantia, 78(1): 82-95.
  • Kavut, Y.T. and Geren, H. 2017. Effects of different harvest dates and mixture rates on the yield and some silage quality characteristics of legume mixtures with annual ryegrass (Lolium multiflorum L.). Journal of Agriculture Faculty of Ege University, 54(2): 115-124. (In Turkish).
  • Kashiwagi, J., Krishnamurthy, L., Purushothaman, R., Upadhyaya, H.D., Gaur, P.M., Gowda, C.L.L. and Varshney, R.K. 2015. Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Research, 170:47-54.
  • Li, L., Sun, J., Zhang, F., Guo, T., Bao, X., Smith, A. and Smith, S.E. 2006. Root distribution and interactions between intercropped species. Oecologia, 147: 280-290.
  • Lithourgidis, A.S.and Dordas, C.A. 2010. Forage yield, growth rate, and nitrogen uptake of faba bean intercrops with wheat, barley, and rye in three seeding ratios. Crop Science, 50(5): 2148-2158.
  • Lithourgidis, A.S., Dordas, C.A., Damalas, C.A. and Vlachostergios, D.N. 2011. Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5:396-410.
  • Lynch, J.P. and van Beem, J.J. 1993. Growth and architecture of roots of common bean genotypes. Crop Science, 5(6):1253-1257.
  • Mariotti, M., Masoni, A., Ercoli, L. and Arduini, I. 2009. Above and below ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass and Forage Science. 64: 401-412.
  • Mia, M.W., Yamauchi, A. and Kono, Y. 1996. Root system structure of six food legume species: Inter and Intraspecific variations. Japanese Journal of Crop Science, 65(1): 131-140.
  • Novoplansky, A. 2019. What plant roots know? Seminars in Cell & Developmental Biology, 92: 126-133.
  • Orman-Ligeza, B., Civava, R., Dorlodot, S. and Draye, X. 2014. Root system architecture. Root Engineering: Basic and Applied Concepts. In: Morte A, Varma A (Eds), Springer Heidelberg, New York.
  • Önal Aşcı, Ö. and Eğritaş, Ö. 2017. Determination of forage yield, some quality properties and competition in common vetch-cereal mixtures. Journal of Agricultural Sciences, 23:242-252. (In Turkish).
  • Önal Aşcı, Ö., Demirkol, G. and Kaşko Arıcı, Y. 2020. Evaluation of hay yield, quality and interspecies competition in hungarian vetch-rapeseed mixtures. Academic Journal of Agriculture, 9(1): 119-128. (In Turkish).
  • Rueden, C.T., Schindelin, J. and Hiner, M.C. 2017. ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinformatics, 18:529.
  • Seydoşoğlu, S., Gelir, G. and Çam, B.A. 2020. Effects of mixture ratio and harvest periods on yield of forage pea and triticale mixtures. Adnan Menderes University Faculty of Agriculture Journal, 17(1): 9-13. (In Turkish).
  • Steel, R.G.D., Torrie, J.H. and Dickey, D.A. 1997. Principles and Procedures of Statistics: a Biometrical Approach. McGraw-Hill, New York.
  • Streit, J., Meinen, C., Nelson, W.C.D., Siebrecht-Schöll, D.J. and Rauber, R. 2019. Above-and belowground biomass in a mixed cropping system with eight novel winter faba bean genotypes and winter wheat using FTIR spectroscopy for root species discrimination. Plant and Soil, 436(1-2): 141-158.
  • Tan, M. and Serin, Y. 2004. Is the companion crop harmless to alfalfa establishment in the highlands of east Anatolia? Journal of Agronomy and Crop Science, 190(1): 1-5.
  • Turpin, J.E., Herridge, D.F. and Robertson, M.J. 2002. Nitrogen fixation and soil nitrate interactions in field-grown chickpea (Cicer arietinum) and faba bean (Vicia faba). Australian Journal of Agricultural Research, 53(5): 599-608.
  • Vidal, D.F., Trichet, P., Puzos, L., Bakker, M.R., Delerue, F. and Augusto, L. 2019. Intercropping N-fixing shrubs in pine plantation forestry as an ecologically sustainable management option. Forest Ecology and Management, 437: 175-187.
  • Xia, H.Y., Zhao, J.H., Sun, J.H., Bao, X.G., Christie, P., Zhang, F.S. and Li, L. 2013. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 50:52-62.
  • Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R.K. and Nguyen, H.T. 2018. Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany, 69(13): 3267-3277.
  • Yıldırım, S. and Özaslan Parlak, A. 2016. Forage yield, qualty of triticale intercrops with faba bean, pea and vetch at varying seeding ratios. COMU Journal of Agriculture Faculty, 4(1): 77-83. (In Turkish).
  • Zhang, E. and Huang, G. 2003. Temporal and spatial distribution characteristics of the crop root in intercropping system. Ying Yong Sheng Tai Xue Bao= The Journal of Applied Ecology, 14(8): 1301-1304.
  • Zhang, E., Li, L., Huang, G., Huang, P. and Chai, Q. 2002. Regulation of fertilizer application on yield and root growth of spring wheat–faba bean intercropping system. Ying Yong Sheng Tai Xue Bao= The Journal of Applied Ecology, 13(8): 839-842.
  • Zoric, L., Mikic, A., Antanasovic, S., Karanovic, D., Cupina, B. and Lukovic, J. 2015. Stem anatomy of annual legume intercropping components: white lupin (Lupinus albus L.), narbonne (Vicia narbonensis L.) and common (Vicia sativa L.) vetches. Agricultural and Food Science, 24(2): 139-149.
  • Zuo, Y. and Zhang, F. 2008. Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil. Plant and Soil, 306(1-2): 23-36.

Root System Interactions of Common Vetch (Vicia Sativa L.) and Triticale (Xtriticosecale Wittmack) Under Intercropping Conditions

Yıl 2021, Cilt: 8 Sayı: 3, 857 - 865, 26.07.2021
https://doi.org/10.30910/turkjans.861756

Öz

Intercropping, mixed cropping, and rotation are commonly applied and some of the oldest crop production techniques to improve soil structure and nitrogen status. While rotation takes generally two-season with one triticeae and legume, inter-and mixed cropping takes place within the same season. Among many advantages of legume inter-and mixed cropping, the most important one is the sustainable use of soil resources and reduced input cost. Numerous studies evaluated the effect of inter -and mixed cropping on above-ground interactions, very few investigated below-ground interactions in these systems. This study aimed to investigate common vetch (Vicia sativa) x triticale (Xtriticosecale Wittmack) root system interactions at the seedling stage under intercropping conditions. The study was conducted with a semi-hydroponic plexiglass system. Five different ratios were used to test species level intercommunication and competition. The results suggest that, while triticale significantly affected the development of common vetch roots, common vetch did not affect triticale. Triticale with a fibrous root system was more aggressive on root growth compared to common vetch. It was seen that the most vigorous root system development (for both species) was at doses with higher legume ratios. Our results highlight the importance of below-ground interactions for the selection of best ratios to gain maximum outcome from the intercropping systems

Kaynakça

  • Abd-El-Samie, F.S. 1994. Growth and yield of maize as affected by N-levels and preceding winter crops. Annals of Agricultural Science, 39(2): 623-631.
  • Abdel Magid, H.M., Ghoneim, M.F., Rabie, R.K. and Sabrah, R.E. 1991. Productivity of wheat and alfalfa under intercropping. Experimental Agriculture, 27(4):391-395.
  • Acar, Z., Önal Aşcı, Ö., Ayan, İ., Mut, H. and Başaran, U. 2006. Intercropping systems for forage crops. Anadolu Journal of Agricultural Sciences, 21(3): 379-386. (In Turkish).
  • Acikbas, S., Ozyazici, M.A. and Bektas, H. 2021. The effect of salinity on root architecture in forage pea (Pisum sativum ssp. arvense L.). Legume Research- An International Journal, 44(4): 407-412.
  • Adiku, S.G.K., Ozier-Lafontaine, H. and Bajazet, T. 2001. Patterns of root growth and water uptake of a maize-cowpea mixture grown under greenhouse conditions. Plant Soil, 235: 85-94.
  • Allen-Perkins, A., Estrada, E. 2019. Mathematical modelling for sustainable aphid control in agriculture via intercropping. Proceedings of the Royal Society A, 475.2226: 20190136.
  • Bargaz, A., Faghire, M., Abdi, N., Farissi, M., Sifi, B., Drevon, J. J. and Ghoulam, C. 2012. Low soil phosphorus availability increases acid phosphatases activities and affects P partitioning in nodules, seeds and rhizosphere of Phaseolus vulgaris. Agriculture, 2(2): 139-153.
  • Bektas, H. 2021. The effect of salt stress on root development and architecture in common grasspea (Lathyrus sativus L.). European Journal of Science and Technology, (23): 793-799.
  • Brooker, R.W., Bennett, A.E., Cong, W.F., Daniell, T.J., George, T.S., Hallett, P.D., Hawes, C., Iannetta, P.P.M., Jones, H.G., Karley, A.J., Li, L., McKenzie, B.M., Pakeman, R.J., Paterson, E., Schöb, C., Shen, J., Squire, G., Watson, C.A., Zhang, C., Zhang, F., Zhang, J. and White, P.J. 2015. Improving intercropping. A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206(1):107-117.
  • Ceritoglu, M., Ceritoglu, F., Erman, M. and Bektas, H. 2020. Root system variation of pulse crops at early vegetative stage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4): 2182-2197.
  • Chen, Y., Ghanem, M.E. and Siddique, K.H.M. 2017. Characterizing root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany, 68(8):1987-1999.
  • Chen, P., Song, C., Liu, X.M., Zhou, L., Yang, H., Zhang, X. and Wang, X.C. 2019. Yield advantage and nitrogen rate in an additive maize-soybean relay intercropping system. Science of the Total Environment, 657: 987-999.
  • Contreras, F., Díaz, J., Rombolà, A.D. and De La Luz Mora, M. 2019. Prospecting intercropping between subterranean clover and grapevine as potential strategy for improve grapevine performance. Current Plant Biology, 19:100110.
  • Corre-Hellou, G. and Crozat, Y. 2005. Assessment of root system dynamics of species grown inmixtures under field conditions using herbicide injection and 15N natural abundance methods: a case study with pea, barley and mustard. Plant Soil, 276(1-2):177-192.
  • Dai, J., Qiu, W., Wang, N., Wang, T., Nakanishi, H. and Zuo, Y.M. 2019. From Leguminosae/Gramineae intercropping systems to see benefits of intercropping on iron nutrition. Frontiers in Plant Science, 10: 605.
  • Deak, A., Hall, M.H., Sanderson, M.A. and Archibadl, D.D. 2007. Production and nutritive value of grazed simple and complex forage mixtures. Agronomy Journal, 99: 814-821.
  • Demiroğlu Topçu, G., Kır, B., Çelen, A. E. and Kavut, Y.T. 2020. Investigations on the Herbage and some other charateristics of common vetch cereal mixtures of different harvest dates. ISPEC Journal of Agricultural Sciences, 4(2): 146-156. (In Turkish).
  • Fan, Z., Zhao, Y., Chai, Q., Zhao, C., Yu, A., Coulter, J.A. and Cao, W. 2019. Synchrony of nitrogen supply and crop demand are driven via high maize density in maize/pea strip intercropping. Scientific Reports, 9(1):1-14.
  • Ghanbari-Banjar, A. and Lee, H.C. 2003. Intercropped wheat (Triticum aestivum L.) and bean (Vicia faba L.) as a whole crop forage: effect of harvest time on forage yield and quality. Grass and Forage Science, 58:28-36.
  • Gregory, P.J., Palta, J.A. and Batts, G.R. 1995. Root systems and root: mass ratio-carbon allocation under current and projected atmospheric conditions in arable crops. Plant Soil, 187(2): 221-228.
  • Gregory, P.J. and Eastham, J. 1996. Growth of shoots and roots, and interception of radiation by wheat and lupin crops on a shallow, duplex soil in response to time of sowing. Australian Journal of Agricultural Research, 47(3):427-447.
  • Haugland, E. and Tawfiq, M. 2001. Root and shoot competition between established grass species and newly sown seedlings during spring growth. Grass and Forage Science, 56(2): 193-199.
  • Hauggaard-Nielsen, H., Ambus, P. and Jensen, E.S. 2001. Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops a field study employing 32P technique. Plant Soil, 236(1):63-74.
  • Horner, A., Browett, S.S. and Antwis, R.E. 2019. Mixed-cropping Between field pea varieties alters root bacterial and fungal communities. Scientific Reports, 9(1): 1-10.
  • Iqbal, M.A., Hamid, A., Ahmad, T., Siddiqui, M.H., Hussain, I., Ali, S. and Ahmad, Z. 2019. Forage sorghum-legumes intercropping: effect on growth, yields, nutritional quality and economic returns. Bragantia, 78(1): 82-95.
  • Kavut, Y.T. and Geren, H. 2017. Effects of different harvest dates and mixture rates on the yield and some silage quality characteristics of legume mixtures with annual ryegrass (Lolium multiflorum L.). Journal of Agriculture Faculty of Ege University, 54(2): 115-124. (In Turkish).
  • Kashiwagi, J., Krishnamurthy, L., Purushothaman, R., Upadhyaya, H.D., Gaur, P.M., Gowda, C.L.L. and Varshney, R.K. 2015. Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Research, 170:47-54.
  • Li, L., Sun, J., Zhang, F., Guo, T., Bao, X., Smith, A. and Smith, S.E. 2006. Root distribution and interactions between intercropped species. Oecologia, 147: 280-290.
  • Lithourgidis, A.S.and Dordas, C.A. 2010. Forage yield, growth rate, and nitrogen uptake of faba bean intercrops with wheat, barley, and rye in three seeding ratios. Crop Science, 50(5): 2148-2158.
  • Lithourgidis, A.S., Dordas, C.A., Damalas, C.A. and Vlachostergios, D.N. 2011. Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5:396-410.
  • Lynch, J.P. and van Beem, J.J. 1993. Growth and architecture of roots of common bean genotypes. Crop Science, 5(6):1253-1257.
  • Mariotti, M., Masoni, A., Ercoli, L. and Arduini, I. 2009. Above and below ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass and Forage Science. 64: 401-412.
  • Mia, M.W., Yamauchi, A. and Kono, Y. 1996. Root system structure of six food legume species: Inter and Intraspecific variations. Japanese Journal of Crop Science, 65(1): 131-140.
  • Novoplansky, A. 2019. What plant roots know? Seminars in Cell & Developmental Biology, 92: 126-133.
  • Orman-Ligeza, B., Civava, R., Dorlodot, S. and Draye, X. 2014. Root system architecture. Root Engineering: Basic and Applied Concepts. In: Morte A, Varma A (Eds), Springer Heidelberg, New York.
  • Önal Aşcı, Ö. and Eğritaş, Ö. 2017. Determination of forage yield, some quality properties and competition in common vetch-cereal mixtures. Journal of Agricultural Sciences, 23:242-252. (In Turkish).
  • Önal Aşcı, Ö., Demirkol, G. and Kaşko Arıcı, Y. 2020. Evaluation of hay yield, quality and interspecies competition in hungarian vetch-rapeseed mixtures. Academic Journal of Agriculture, 9(1): 119-128. (In Turkish).
  • Rueden, C.T., Schindelin, J. and Hiner, M.C. 2017. ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinformatics, 18:529.
  • Seydoşoğlu, S., Gelir, G. and Çam, B.A. 2020. Effects of mixture ratio and harvest periods on yield of forage pea and triticale mixtures. Adnan Menderes University Faculty of Agriculture Journal, 17(1): 9-13. (In Turkish).
  • Steel, R.G.D., Torrie, J.H. and Dickey, D.A. 1997. Principles and Procedures of Statistics: a Biometrical Approach. McGraw-Hill, New York.
  • Streit, J., Meinen, C., Nelson, W.C.D., Siebrecht-Schöll, D.J. and Rauber, R. 2019. Above-and belowground biomass in a mixed cropping system with eight novel winter faba bean genotypes and winter wheat using FTIR spectroscopy for root species discrimination. Plant and Soil, 436(1-2): 141-158.
  • Tan, M. and Serin, Y. 2004. Is the companion crop harmless to alfalfa establishment in the highlands of east Anatolia? Journal of Agronomy and Crop Science, 190(1): 1-5.
  • Turpin, J.E., Herridge, D.F. and Robertson, M.J. 2002. Nitrogen fixation and soil nitrate interactions in field-grown chickpea (Cicer arietinum) and faba bean (Vicia faba). Australian Journal of Agricultural Research, 53(5): 599-608.
  • Vidal, D.F., Trichet, P., Puzos, L., Bakker, M.R., Delerue, F. and Augusto, L. 2019. Intercropping N-fixing shrubs in pine plantation forestry as an ecologically sustainable management option. Forest Ecology and Management, 437: 175-187.
  • Xia, H.Y., Zhao, J.H., Sun, J.H., Bao, X.G., Christie, P., Zhang, F.S. and Li, L. 2013. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 50:52-62.
  • Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R.K. and Nguyen, H.T. 2018. Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany, 69(13): 3267-3277.
  • Yıldırım, S. and Özaslan Parlak, A. 2016. Forage yield, qualty of triticale intercrops with faba bean, pea and vetch at varying seeding ratios. COMU Journal of Agriculture Faculty, 4(1): 77-83. (In Turkish).
  • Zhang, E. and Huang, G. 2003. Temporal and spatial distribution characteristics of the crop root in intercropping system. Ying Yong Sheng Tai Xue Bao= The Journal of Applied Ecology, 14(8): 1301-1304.
  • Zhang, E., Li, L., Huang, G., Huang, P. and Chai, Q. 2002. Regulation of fertilizer application on yield and root growth of spring wheat–faba bean intercropping system. Ying Yong Sheng Tai Xue Bao= The Journal of Applied Ecology, 13(8): 839-842.
  • Zoric, L., Mikic, A., Antanasovic, S., Karanovic, D., Cupina, B. and Lukovic, J. 2015. Stem anatomy of annual legume intercropping components: white lupin (Lupinus albus L.), narbonne (Vicia narbonensis L.) and common (Vicia sativa L.) vetches. Agricultural and Food Science, 24(2): 139-149.
  • Zuo, Y. and Zhang, F. 2008. Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil. Plant and Soil, 306(1-2): 23-36.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Semih Açıkbaş 0000-0003-4384-3908

Mehmet Arif Özyazıcı 0000-0001-8709-4633

Harun Bektaş 0000-0002-4397-4089

Yayımlanma Tarihi 26 Temmuz 2021
Gönderilme Tarihi 15 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 3

Kaynak Göster

APA Açıkbaş, S., Özyazıcı, M. A., & Bektaş, H. (2021). Root System Interactions of Common Vetch (Vicia Sativa L.) and Triticale (Xtriticosecale Wittmack) Under Intercropping Conditions. Türk Tarım Ve Doğa Bilimleri Dergisi, 8(3), 857-865. https://doi.org/10.30910/turkjans.861756