Research Article
BibTex RIS Cite

Meteorolojik Kuraklığın Buğday Verimindeki Etkisinin Değerlendirilmesi: Kızılırmak Havzası Örneği

Year 2025, Volume: 12 Issue: 1, 10 - 27

Abstract

Çalışmada, tarımsal üretimin fazla ve tarımsal kuraklığın etkili olduğu Kızılırmak Havzası’nda ekstrem kurak ayların ve yılların belirlenmesi ile tarımsal kuraklık ile buğday verimi arasındaki ilişkinin değerlendirilmesi amaçlanmıştır. 1991-2022 yılları arasındaki kuraklık – verim ilişkisinin incelendiği çalışmada, havzada oluşan kuraklık koşullarının belirlenmesinde Standartlaştırılmış Yağış Evapotranspirasyon İndisi (SPEI) kullanılmıştır. Kuraklık 1, 3, 6, 9 ve 12 aylık dönemlerde incelenmiştir. Çalışmamızda havzalar arasında aşırı kuraklık değerleri 1994, 2008, 2014 ve 2016 yıllarındadır. Kısa dönemli (1-3 aylık) kuraklık şiddetinin, özellikle çalışma alanının güneyinde karasal iklimin etkili olduğu Kayseri ve Ürgüp istasyonlarında, buğday verimini olumsuz etkilediğini göstermektedir. Uzun dönemli (6-12 aylık) kuraklık ise 2007-2014 yılları arasında çalışma alanının güney kesimindeki Nevşehir istasyonunda yüksek korelasyon değerlerine sahip olup, kuraklık şiddetinin arttığı dönemlerde verimde ciddi düşüşler gözlemlenmiştir. Kuraklık şiddeti ve tekrarlama sıklığının, karasal iklim özellikleri, atmosferik koşullar ve artan sıcak hava dalgalarıyla birlikte 2000’li yıllardan itibaren belirgin şekilde arttığı, bu durumun da verim kayıplarına yol açtığı tespit edilmiştir. Elde edilen bulgular, buğdayın yaklaşık hasat zamanı olan Haziran ayına kadar yaşanan 6 aylık meteorolojik koşulların Kızılırmak Havzası’ndaki buğday verimine etkili olduğunu ortaya koymaktadır. Çalışma, kuraklık ve verim arasındaki ilişkinin zamanla değiştiğini ve uzun süreli kuraklık koşullarının tarımsal üretimi olumsuz etkilediğini göstermektedir.

References

  • Akansu, A. F., & Kızıldeniz, T. (2024). Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios. Eurasian Journal of Agricultural Research, 8(1), 85-95.
  • Aktürk, G., Çıtakoğlu, H., Demir, V., & Beden , N. (2024). Meteorological Drought Analysis and Regional Frequency Analysis in the Kızılırmak Basin: Creating a Framework for Sustainable Water Resources Management. Water, 16(2124), 1-33.
  • Aktürk, G., Zeybekoğlu, U., & Yıldız, O. (2022). Assessment of meteorological drought analysis in the Kizilirmak River Basin, Turkey. (1-15, Ed.) Arabian Journal of Geosciences, 15(850).
  • Anderson, R., & French, A. (2019). Crop evapotranspiration. Agronomy 9, 614.
  • Arslan, O., Bilgil, A., & Veske, O. (2016). Standart Yağış İndisi Yöntemi ile Kızılırmak Havzası'nın Meteorolojik Kuraklık Analizi. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 5(2), 188-194.
  • Aydın, F., & Sarptaş, H. (2018). İklim değişikliğinin bitki yetiştiriciliğine etkisi: model bitkiler ile Türkiye durumu . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , 24(3), 512-521.
  • Benito-Verdugo, P., Martínez-Fernández, J., González-Zamora, A., Almendra-Martín, L., Gaona, J., & Herrero-Jiménez, C. (2023). Impact of Agricultural Drought on Barley and Wheat Yield: A Comparative Case Study of Spain and Germany. Agriculture, 13(2111), 1-20.
  • Camoglu, G., Demirel, K., Kahriman, F., Akcal, A., & Nar, H. (2024). Plant-based monitoring techniques to detect yield and physiological responses in water-stressed pepper. Agricultural Water Management, 291, 1-11.
  • Can, A., & Yılmaz, D. (2023). Kızılırmak Havzası Barajlarının Kuraklığa Etkisi . MAUN Mühendislik-Mimarlık Fakültesi Dergisi, 4(1), 1-10.
  • Chen, X., Wang, L., Cao, Q., Sun, J., Nıu, Z., Yang, L., & Jiang, W. (2024). Response of global agricultural productivity anomalies to drought stress in irrigated and rainfed agriculture. Science China Earth Sciences, 67, 1-15.
  • Das, S., Das, J., & Umamahesh, N. (2023). A Non Stationary Based Approach to Understand the Propagation of Meteorological to Agricultural Droughts. Water Resources Management , 37, 2483-2504.
  • Demirdogen, A., Karapinar, B., & Özertan, G. (2024). The impact of climate change on wheat in Turkey. Regional Environmental Change, 24(20), 1-11. doi:https://doi.org/10.1007/s10113-023-02172-6
  • Dutra, D., Viterbo, P., & Miranda, P. (2008). ERA-40 reanalysis hydrological applications in the characterization of regional drought. Geophysical Research Letters, 35, L19402.
  • Erlat, E., & Güler , H. (2023). Temporal Variation of Droughts According to Standardized Precipitation Evapotranspiration Index (SPEI) in Turkey (1951-2022). Journal of Aegean Geography, (100th Year of the Republic Special Issue), 32, 77-90.
  • Erlat, E., Türkes, M., & Aydın-Kandemir, F. (2021). Observed changes and trends in heatwave characteristics in Turkey since 1950. Theoretical and Applied Climatology, 145(1), 137-157.
  • Ersöz, F., & Ersöz , T. (2022). İstatistik – I Kavram – Teori – Parametrik Testler. Seçkin Yayıncılık.
  • Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics. London: SAGE Publications.
  • Gökmen, G. (2023). İklim Değişikliğinin Türkiye'nin Tarım Ürünleri Dış Ticaretine Etkileri: Buğday Örneği. T. C. İSTANBUL GELİŞİM ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ Uluslararası Ticaret ve Lojistik Anabilim Dalı .
  • Gravetter, F., & Wallnau, L. (2013). Statistics for the Behavioral Sciences (9th Edition). Belmont, CA: Wadsworth. Guo, W., Huang, S., Huang, Q., She, D., Shi, H., Leng, G., . . . Peng, J. (2023). Precipitation and vegetation transpiration variations dominate the dynamics of agricultural drought characteristics in China. Science of The Total Environment, 898(165480), 1-12.
  • Hao, Z., AghaKouchak, A., Nakhjiri, N., & Farahmand, A. (2014). Global integrated droughtmonitoring and prediction system. Scientific Data, 1,140001.
  • Hao, Z., Sing, V., & Xia, Y. (2018). Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Reviews of Geophysics, 56(1), 108-141. doi:https://doi.org/10.1002/2016RG000549
  • Huang, J., Zhuo, W., Li, Y., Huang, R., Sedano, F., Su, W., . . . Zhang, X. (2020). Comparison of three remotely sensed drought indices for assessing the impact of drought on winter wheat yield. International Journal of Digital Earth, 13(4), 504-526.
  • Iqbal, M., Goheer, M., & Khan, A. (2009). Climate change aspersions on food security of Pakistan. Science Vision, 15(1), 15-23.
  • Kartal, F., Gözalan, S., & Öztekinci, M. (2024). Kızılırmak Havzası’nın Sıcaklık, Yağış, Buharlaşma İle Akım Verilerinin Eğilim (Trend) Yönlerinin Belirlenmesi. International Journal of Eurasia Social Sciences (IJOESS), 15(57), 1055-1070.
  • Kartal, V., & Emiroğlu, M. (2024). Hydrological Drought and Trend Analysis in Kızılırmak, Yes¸ilırmak and Sakarya Basins. Pure and Applied Geophysics, 181, 1919-1943.
  • Koç, H., Doğru, D., & Han, E. (2018). Yukarı Kızılırmak Havzası'nda ırmak sularının tarımda sulama amaçlı kullanım özelliklerinin belirlenmesi üzerine bir araştırma . Türk Coğrafya Dergisi, 70, 57-70.
  • Li, W., Liu, S., Hau, M., Han, J., & Chen, X. (2021). Advance in the study on meteorological and agricultural drought indices. Meteorol. Environ. Sci, 196, 76-82.
  • Matiu, M., Ankerst, D., & Menzel, A. (2017). Interactions Between Temperature and Drought in Global and Regional Crop Yield Variability During 1961-201. PLoS ONE , 12(5), 1-23.
  • Miro, J. J., Estrela, M. J., Corell, D., Gomez, D., & Luna, M. Y. (2023). Precipitation and drought trends (1952–2021) in a key hydrological recharge area of the eastern Iberian Peninsula. Atmospheric Research , 286, 1-19.
  • Moriondo, M., Giannakopoulos, C., & Bindi, M. (2011). Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic Change, 104, 679-701.
  • Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133, 69-88.
  • Ndayiragije, J., & Li, F. (2022). Effectiveness of Drought Indices in the Assessment of Different Types of Droughts, Managing and Mitigating Their Effects. Climate, 10(125), 1-21.
  • Ozelkan, E., Chen, G., & Ustündag, B. (2016). Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 44, 159-170.
  • Öz Y., F., Özelkan, E., & Tatlı, H. (2024). Comparative analysis of SPI, SPEI, and RDI indices for assessing spatio temporal variation of drought in Türkiye. Earth Science Informatics, 1-33. doi:https://doi.org/10.1007/s12145-024-01401-8
  • Özelkan, E. (2022). Spatial–Temporal Change of a Dam Lake Using Remote Sensing and Meteorological Drought Indices. In A. Shaban, Satellite Monitoring of Water Resources in the Middle East (pp. 129-147). Cham: Springer Water.
  • Palmer, W. (1965). Meteorological drought. Research Paper , No: 45.
  • Partigöç, S., & Soğancı, S. (2019). Küresel İklim Değişikliğnin Kaçınılmaz Sonu: Kuraklık. Dirençlilik Dergisi, 2(3), 287-299.
  • Peña-Gallardo, M., Vicente-Serrano, S., Domínguez-Castro, F., & Beguería, S. (2019). The impact of drought on the productivity of two rainfed crops in Spain . Natural Hazards and Earth System Sciences, 19, 1215-1234.
  • Qaisrani, Z., Nuthammachot, N., & Techato, K. (2021). Drought monitoring based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index in the arid zone of Balochistan province, Pakistan. Arabian Journal of Geosciences, 14(11), 1-13.
  • Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(34), 1-29.
  • Robleh, H., Yuce, M., & Deger, I. (2024). Meteorological drought monitoring in Kızılırmak Basin, Türkiye. Environmental Earth Sciences, 83(265), 1-16.
  • Sağdıç, M., & Koç, H. (2012). Yukarı Kızılırmak Havzası'nın İklimi. Türk Coğrafya Dergisi(58), 1-20.
  • Selçuk, S., Selçuk, B., & Cebeci, M. (2024). Projections of meteorological drought events in the upper Kızılırmak basin under climate change scenarios. Theoretical and Applied Climatology, 155, 5629-5646.
  • Sheffield, J., Goteti, G., Wen, F., & Wood, E. F. (2004). A simulated soil moisture based drought analysis for the United States. Journal of Geophysical Research, 109, D24108.
  • Shi, X., Yang, Y., Ding, H., Chen, F., & Shi, M. (2023). Analysis of the Variability Characteristics and Applicability of SPEI in Mainland China from 1985 to 2018. Atmosphere, 14(790), 1-17.
  • Simsek, O., & Cakmak, B. (2010). Drought Analysis for 2007-2008 Agricultural Year of Turkey. Journal of Tekirdag Agricultural Faculty, 7(3), 1-11.
  • Soylu Pekpostalci, D., Tur, R., Danandeh Mehr, A., Vazifekhah Ghaffari, M., Dabrowska, D., & Nourani, V. (2023). Drought Monitoring and Forecasting across Turkey: A Contemporary Review. Sustainability, 15(6080), 1-23. doi:https://doi.org/10.3390/su15076080
  • Şorman, A., Mehr, A., & Hadi, S. (2018). Study on spatial-temporal variations of Meteorological-Agricultural droughts in Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018, (pp. 483-490). Istanbul, Turkey.
  • T. C. Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü. (2023). Kızılırmak Havzası Kuraklık Yönetim Planı. Ankara: Tarım ve Orman Bakanlığı, Su Yönetimi Genel Müdürlüğü .
  • Taskın, O., Somuncu, M., & Capar, G. (2022). An Assessment on the Impacts of Climate Change on Water Resources and Agriculture Sector in Turkey. TUCAUM 2022 International Geography Symposium, (pp. 468-484). Ankara.
  • Tatlı, H., & Türkes, M. (2008). Determination of the Link between the 2006/2007 Drought in Turkey and Large-Scale Atmospheric Variables by Logistic Regression. Proceedings of the IVth Atmospheric Sciences Symposium, March 25-28, 2008, (pp. 516-527). Istanbul.
  • Tegos, A., Stefanidis, S., Cody, J., & Koutsoyiannis, D. (2023). On the Sensitivity of Standardized-PrecipitationEvapotranspiration and Aridity Indexes Using Alternative Potential Evapotranspiration Models. Hydrology, 10(64), 1-13.
  • Tigkas, D., & Tsakiris, G. (2015). Early Estimation of Drought Impacts on Rainfed Wheat Yield in Mediterranean Climate. Environmental Processes, 2, 97-114.
  • Tirivarombo, S., Osupile, D., & Eliasson, P. (2018). Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys Chem Earth, Parts A/B/C, 106, 1-10.
  • Tsakiris, G., Pangalou, D., & Vangelis, H. (2007). Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI). Water Resource Manage, 21, 821-833.
  • Türkes, M. (2012). Drought, Desertification and a Detailed Analysis of the United Nations Convention on Combating Desertification. Marmara European Studies Association, 20(1), 1-49.
  • Türkes, M. (2020). Climate and Drought in Turkey. In N. B. Harmancıoğlu, & A. D. (Editorial), Water Resources of Turkey, World Water Resources (Vol. 2, pp. 85-125). Springer.
  • Vicente-Serrano, S. M., Beguería, S., & Lopez-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: the standardized Precipitation Evapotranspiration Index. Journal of Climate, 23, 1696-1718.
  • Wang, T., Tu, X., Sing, V., Chen, X., & Lin , K. (2021). Global data assessment and analysis of drought characteristics based on CMIP6 . Journal of Hydrology, 596(126091), 1-14. doi:https://doi.org/10.1016/j.jhydrol.2021.126091
  • Wei, X., Huang, S., Li, J., Huang, Q., Leng, G., Liu, D., . . . Bai, Q. (2024). The negative-positive feedback transition thresholds of meteorological drought in response to agricultural drought and their dynamics. Science of the Total Environment, 906(167817), 1-15.
  • Yıldız, O. (2014). Spatiotemporal Analysis of Historical Droughts in the Central Anatolia, Turkey . Gazi University Journal of Science, 27(4), 1177-1184.
  • Yılmaz, G. (2023). Kuraklık ve Sıcak Hava Dalgasının Tarımsal Üretim Üzerine Etkileri. Doğal Afetler ve Çevre Dergisi, 9(2), 240-257 .
  • Zarei, A., Shabani, A., & Moghimi, M. (2021). Accuracy Assessment of the SPEI, RDI and SPI Drought Indices in Regions of Iran with Different Climate Conditions. Pure and Applied Geophysics, 178, 1387-1403. doi:https://doi.org/10.1007/s00024-021-02704-3
  • Zhou, Z., Liu, S., Ding, Y., Fu, Q., Wang, Y., Cai, H., & Shi, H. (2022). Assessing the responses of vegetation to meteorological drought and its influencing factors with partial wavelet coherence analysis. Journal of Environmental Management , 311(114879), 1-12. doi:https://doi.org/10.1016/j.jenvman.2022.114879

Evaluation of the Effect Meteorological Drought on Wheat Yield: The Example of the Kizilirmak Basin

Year 2025, Volume: 12 Issue: 1, 10 - 27

Abstract

This research, it was aimed to determine the extreme dry months and years in the Kızılırmak basin, where agricultural production is high and agricultural drought is effective, and to evaluate the relationship between agricultural drought and wheat yield. In the study in which the drought - yield relationship between 1991-2022 was examined, Standardised Precipitation Evapotranspiration Index (SPEI) was used to determine the drought conditions in the basin. Drought was analysed in 1, 3, 6, 9 and 12-month periods. In Kızılırmak Basin, the class range of normal arid conditions with the highest average frequency value among the drought classes was determined as -0.99 to 0.99. In this study, extreme droughts among the basins were in 1994, 2008, 2014 and 2016. Short-term (1-3 months) drought severity has a negative effect on wheat yield, especially in Kayseri and Ürgüp stations in the south of the study area where continental climate is effective. Long-term (6-12 months) drought had high correlation values at Nevşehir station in the southern part of the study area between 2007-2014, and serious decreases in yield were observed during periods of increased drought severity. It was determined that drought severity and recurrence frequency increased significantly since 2000s with continental climate characteristics, atmospheric conditions and increasing heat waves, which led to yield losses. The obtained findings reveal that the meteorological conditions of 6 months until June, which is approximately the harvest time of wheat, are effective on wheat yield in Kızılırmak Basin. The study shows that the relationship between drought and yield changes over time and that long-term drought conditions negatively affect agricultural production.

References

  • Akansu, A. F., & Kızıldeniz, T. (2024). Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios. Eurasian Journal of Agricultural Research, 8(1), 85-95.
  • Aktürk, G., Çıtakoğlu, H., Demir, V., & Beden , N. (2024). Meteorological Drought Analysis and Regional Frequency Analysis in the Kızılırmak Basin: Creating a Framework for Sustainable Water Resources Management. Water, 16(2124), 1-33.
  • Aktürk, G., Zeybekoğlu, U., & Yıldız, O. (2022). Assessment of meteorological drought analysis in the Kizilirmak River Basin, Turkey. (1-15, Ed.) Arabian Journal of Geosciences, 15(850).
  • Anderson, R., & French, A. (2019). Crop evapotranspiration. Agronomy 9, 614.
  • Arslan, O., Bilgil, A., & Veske, O. (2016). Standart Yağış İndisi Yöntemi ile Kızılırmak Havzası'nın Meteorolojik Kuraklık Analizi. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 5(2), 188-194.
  • Aydın, F., & Sarptaş, H. (2018). İklim değişikliğinin bitki yetiştiriciliğine etkisi: model bitkiler ile Türkiye durumu . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , 24(3), 512-521.
  • Benito-Verdugo, P., Martínez-Fernández, J., González-Zamora, A., Almendra-Martín, L., Gaona, J., & Herrero-Jiménez, C. (2023). Impact of Agricultural Drought on Barley and Wheat Yield: A Comparative Case Study of Spain and Germany. Agriculture, 13(2111), 1-20.
  • Camoglu, G., Demirel, K., Kahriman, F., Akcal, A., & Nar, H. (2024). Plant-based monitoring techniques to detect yield and physiological responses in water-stressed pepper. Agricultural Water Management, 291, 1-11.
  • Can, A., & Yılmaz, D. (2023). Kızılırmak Havzası Barajlarının Kuraklığa Etkisi . MAUN Mühendislik-Mimarlık Fakültesi Dergisi, 4(1), 1-10.
  • Chen, X., Wang, L., Cao, Q., Sun, J., Nıu, Z., Yang, L., & Jiang, W. (2024). Response of global agricultural productivity anomalies to drought stress in irrigated and rainfed agriculture. Science China Earth Sciences, 67, 1-15.
  • Das, S., Das, J., & Umamahesh, N. (2023). A Non Stationary Based Approach to Understand the Propagation of Meteorological to Agricultural Droughts. Water Resources Management , 37, 2483-2504.
  • Demirdogen, A., Karapinar, B., & Özertan, G. (2024). The impact of climate change on wheat in Turkey. Regional Environmental Change, 24(20), 1-11. doi:https://doi.org/10.1007/s10113-023-02172-6
  • Dutra, D., Viterbo, P., & Miranda, P. (2008). ERA-40 reanalysis hydrological applications in the characterization of regional drought. Geophysical Research Letters, 35, L19402.
  • Erlat, E., & Güler , H. (2023). Temporal Variation of Droughts According to Standardized Precipitation Evapotranspiration Index (SPEI) in Turkey (1951-2022). Journal of Aegean Geography, (100th Year of the Republic Special Issue), 32, 77-90.
  • Erlat, E., Türkes, M., & Aydın-Kandemir, F. (2021). Observed changes and trends in heatwave characteristics in Turkey since 1950. Theoretical and Applied Climatology, 145(1), 137-157.
  • Ersöz, F., & Ersöz , T. (2022). İstatistik – I Kavram – Teori – Parametrik Testler. Seçkin Yayıncılık.
  • Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics. London: SAGE Publications.
  • Gökmen, G. (2023). İklim Değişikliğinin Türkiye'nin Tarım Ürünleri Dış Ticaretine Etkileri: Buğday Örneği. T. C. İSTANBUL GELİŞİM ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ Uluslararası Ticaret ve Lojistik Anabilim Dalı .
  • Gravetter, F., & Wallnau, L. (2013). Statistics for the Behavioral Sciences (9th Edition). Belmont, CA: Wadsworth. Guo, W., Huang, S., Huang, Q., She, D., Shi, H., Leng, G., . . . Peng, J. (2023). Precipitation and vegetation transpiration variations dominate the dynamics of agricultural drought characteristics in China. Science of The Total Environment, 898(165480), 1-12.
  • Hao, Z., AghaKouchak, A., Nakhjiri, N., & Farahmand, A. (2014). Global integrated droughtmonitoring and prediction system. Scientific Data, 1,140001.
  • Hao, Z., Sing, V., & Xia, Y. (2018). Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Reviews of Geophysics, 56(1), 108-141. doi:https://doi.org/10.1002/2016RG000549
  • Huang, J., Zhuo, W., Li, Y., Huang, R., Sedano, F., Su, W., . . . Zhang, X. (2020). Comparison of three remotely sensed drought indices for assessing the impact of drought on winter wheat yield. International Journal of Digital Earth, 13(4), 504-526.
  • Iqbal, M., Goheer, M., & Khan, A. (2009). Climate change aspersions on food security of Pakistan. Science Vision, 15(1), 15-23.
  • Kartal, F., Gözalan, S., & Öztekinci, M. (2024). Kızılırmak Havzası’nın Sıcaklık, Yağış, Buharlaşma İle Akım Verilerinin Eğilim (Trend) Yönlerinin Belirlenmesi. International Journal of Eurasia Social Sciences (IJOESS), 15(57), 1055-1070.
  • Kartal, V., & Emiroğlu, M. (2024). Hydrological Drought and Trend Analysis in Kızılırmak, Yes¸ilırmak and Sakarya Basins. Pure and Applied Geophysics, 181, 1919-1943.
  • Koç, H., Doğru, D., & Han, E. (2018). Yukarı Kızılırmak Havzası'nda ırmak sularının tarımda sulama amaçlı kullanım özelliklerinin belirlenmesi üzerine bir araştırma . Türk Coğrafya Dergisi, 70, 57-70.
  • Li, W., Liu, S., Hau, M., Han, J., & Chen, X. (2021). Advance in the study on meteorological and agricultural drought indices. Meteorol. Environ. Sci, 196, 76-82.
  • Matiu, M., Ankerst, D., & Menzel, A. (2017). Interactions Between Temperature and Drought in Global and Regional Crop Yield Variability During 1961-201. PLoS ONE , 12(5), 1-23.
  • Miro, J. J., Estrela, M. J., Corell, D., Gomez, D., & Luna, M. Y. (2023). Precipitation and drought trends (1952–2021) in a key hydrological recharge area of the eastern Iberian Peninsula. Atmospheric Research , 286, 1-19.
  • Moriondo, M., Giannakopoulos, C., & Bindi, M. (2011). Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic Change, 104, 679-701.
  • Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133, 69-88.
  • Ndayiragije, J., & Li, F. (2022). Effectiveness of Drought Indices in the Assessment of Different Types of Droughts, Managing and Mitigating Their Effects. Climate, 10(125), 1-21.
  • Ozelkan, E., Chen, G., & Ustündag, B. (2016). Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 44, 159-170.
  • Öz Y., F., Özelkan, E., & Tatlı, H. (2024). Comparative analysis of SPI, SPEI, and RDI indices for assessing spatio temporal variation of drought in Türkiye. Earth Science Informatics, 1-33. doi:https://doi.org/10.1007/s12145-024-01401-8
  • Özelkan, E. (2022). Spatial–Temporal Change of a Dam Lake Using Remote Sensing and Meteorological Drought Indices. In A. Shaban, Satellite Monitoring of Water Resources in the Middle East (pp. 129-147). Cham: Springer Water.
  • Palmer, W. (1965). Meteorological drought. Research Paper , No: 45.
  • Partigöç, S., & Soğancı, S. (2019). Küresel İklim Değişikliğnin Kaçınılmaz Sonu: Kuraklık. Dirençlilik Dergisi, 2(3), 287-299.
  • Peña-Gallardo, M., Vicente-Serrano, S., Domínguez-Castro, F., & Beguería, S. (2019). The impact of drought on the productivity of two rainfed crops in Spain . Natural Hazards and Earth System Sciences, 19, 1215-1234.
  • Qaisrani, Z., Nuthammachot, N., & Techato, K. (2021). Drought monitoring based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index in the arid zone of Balochistan province, Pakistan. Arabian Journal of Geosciences, 14(11), 1-13.
  • Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(34), 1-29.
  • Robleh, H., Yuce, M., & Deger, I. (2024). Meteorological drought monitoring in Kızılırmak Basin, Türkiye. Environmental Earth Sciences, 83(265), 1-16.
  • Sağdıç, M., & Koç, H. (2012). Yukarı Kızılırmak Havzası'nın İklimi. Türk Coğrafya Dergisi(58), 1-20.
  • Selçuk, S., Selçuk, B., & Cebeci, M. (2024). Projections of meteorological drought events in the upper Kızılırmak basin under climate change scenarios. Theoretical and Applied Climatology, 155, 5629-5646.
  • Sheffield, J., Goteti, G., Wen, F., & Wood, E. F. (2004). A simulated soil moisture based drought analysis for the United States. Journal of Geophysical Research, 109, D24108.
  • Shi, X., Yang, Y., Ding, H., Chen, F., & Shi, M. (2023). Analysis of the Variability Characteristics and Applicability of SPEI in Mainland China from 1985 to 2018. Atmosphere, 14(790), 1-17.
  • Simsek, O., & Cakmak, B. (2010). Drought Analysis for 2007-2008 Agricultural Year of Turkey. Journal of Tekirdag Agricultural Faculty, 7(3), 1-11.
  • Soylu Pekpostalci, D., Tur, R., Danandeh Mehr, A., Vazifekhah Ghaffari, M., Dabrowska, D., & Nourani, V. (2023). Drought Monitoring and Forecasting across Turkey: A Contemporary Review. Sustainability, 15(6080), 1-23. doi:https://doi.org/10.3390/su15076080
  • Şorman, A., Mehr, A., & Hadi, S. (2018). Study on spatial-temporal variations of Meteorological-Agricultural droughts in Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018, (pp. 483-490). Istanbul, Turkey.
  • T. C. Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü. (2023). Kızılırmak Havzası Kuraklık Yönetim Planı. Ankara: Tarım ve Orman Bakanlığı, Su Yönetimi Genel Müdürlüğü .
  • Taskın, O., Somuncu, M., & Capar, G. (2022). An Assessment on the Impacts of Climate Change on Water Resources and Agriculture Sector in Turkey. TUCAUM 2022 International Geography Symposium, (pp. 468-484). Ankara.
  • Tatlı, H., & Türkes, M. (2008). Determination of the Link between the 2006/2007 Drought in Turkey and Large-Scale Atmospheric Variables by Logistic Regression. Proceedings of the IVth Atmospheric Sciences Symposium, March 25-28, 2008, (pp. 516-527). Istanbul.
  • Tegos, A., Stefanidis, S., Cody, J., & Koutsoyiannis, D. (2023). On the Sensitivity of Standardized-PrecipitationEvapotranspiration and Aridity Indexes Using Alternative Potential Evapotranspiration Models. Hydrology, 10(64), 1-13.
  • Tigkas, D., & Tsakiris, G. (2015). Early Estimation of Drought Impacts on Rainfed Wheat Yield in Mediterranean Climate. Environmental Processes, 2, 97-114.
  • Tirivarombo, S., Osupile, D., & Eliasson, P. (2018). Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys Chem Earth, Parts A/B/C, 106, 1-10.
  • Tsakiris, G., Pangalou, D., & Vangelis, H. (2007). Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI). Water Resource Manage, 21, 821-833.
  • Türkes, M. (2012). Drought, Desertification and a Detailed Analysis of the United Nations Convention on Combating Desertification. Marmara European Studies Association, 20(1), 1-49.
  • Türkes, M. (2020). Climate and Drought in Turkey. In N. B. Harmancıoğlu, & A. D. (Editorial), Water Resources of Turkey, World Water Resources (Vol. 2, pp. 85-125). Springer.
  • Vicente-Serrano, S. M., Beguería, S., & Lopez-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: the standardized Precipitation Evapotranspiration Index. Journal of Climate, 23, 1696-1718.
  • Wang, T., Tu, X., Sing, V., Chen, X., & Lin , K. (2021). Global data assessment and analysis of drought characteristics based on CMIP6 . Journal of Hydrology, 596(126091), 1-14. doi:https://doi.org/10.1016/j.jhydrol.2021.126091
  • Wei, X., Huang, S., Li, J., Huang, Q., Leng, G., Liu, D., . . . Bai, Q. (2024). The negative-positive feedback transition thresholds of meteorological drought in response to agricultural drought and their dynamics. Science of the Total Environment, 906(167817), 1-15.
  • Yıldız, O. (2014). Spatiotemporal Analysis of Historical Droughts in the Central Anatolia, Turkey . Gazi University Journal of Science, 27(4), 1177-1184.
  • Yılmaz, G. (2023). Kuraklık ve Sıcak Hava Dalgasının Tarımsal Üretim Üzerine Etkileri. Doğal Afetler ve Çevre Dergisi, 9(2), 240-257 .
  • Zarei, A., Shabani, A., & Moghimi, M. (2021). Accuracy Assessment of the SPEI, RDI and SPI Drought Indices in Regions of Iran with Different Climate Conditions. Pure and Applied Geophysics, 178, 1387-1403. doi:https://doi.org/10.1007/s00024-021-02704-3
  • Zhou, Z., Liu, S., Ding, Y., Fu, Q., Wang, Y., Cai, H., & Shi, H. (2022). Assessing the responses of vegetation to meteorological drought and its influencing factors with partial wavelet coherence analysis. Journal of Environmental Management , 311(114879), 1-12. doi:https://doi.org/10.1016/j.jenvman.2022.114879
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Research Article
Authors

Fatma Yaman Öz 0000-0002-6983-288X

Emre Özelkan 0000-0002-2031-1610

Kürşad Demirel 0000-0002-2029-5884

Hasan Tatlı 0000-0002-1960-0618

Publication Date
Submission Date December 8, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Yaman Öz, F., Özelkan, E., Demirel, K., Tatlı, H. (n.d.). Meteorolojik Kuraklığın Buğday Verimindeki Etkisinin Değerlendirilmesi: Kızılırmak Havzası Örneği. Turkish Journal of Agricultural and Natural Sciences, 12(1), 10-27. https://doi.org/10.30910/turkjans.1598132