Diğer
BibTex RIS Kaynak Göster

Otizm Belirtilerinin Erken Tespitinde Duygu Durumlarına Yöneltilen Görsel Dikkatin Makine Öğrenmesi Aracılığıyla Değerlendirilmesi

Yıl 2024, Cilt: 39 Sayı: Özel Sayı Kasım 2024, 103 - 129, 11.11.2024
https://doi.org/10.31828/turkpsikoloji.1537964

Öz

Otizmli olan çocuklar doğal sosyal etkileşim durumlarında insan yüzlerine görsel dikkati yönlendirmede ve insan yüzlerinin sergilediği anlamları yorumlamada sosyal uyum süreci için gerekli bilgileri edinmede sınırlılıklar sergilerler. Bu sınırlılıklardan hareketle bu çalışmada otizmli çocukları tipik gelişen (TG) akranlarından erken yıllarda ayırt etmede makine öğrenme algoritmalarının kullanımı amaçlanmıştır. Bu amaç doğrultusunda mutlu, üzgün ve nötr duyguları yansıtan videolar oluşturulmuştur. Göz izleme cihazı ile 18 - 36 ay aralığındaki otizmli ve TG’li katılımcıların duygu durumlarını yansıtan videoları izlemeleri sırasında sergiledikleri göz hareketleri kayıt altına alınarak her duygu durumu için ayrı bir veri seti oluşturulmuştur. Araştırma kapsamında duygu durum video veri setleri üzerinde filtre ve sarmalama yaklaşımlarına dayalı öznitelik seçim metotları uygulanarak ayırt edici öznitelikler belirlenmiştir. Ardından belirlenen öznitelikler kullanılarak Karar Ağacı, Naive Bayes ve K En Yakın Komşu sınıflandırma algoritmaları uygulanmıştır. Tespit edilen ayırıcı özniteliklere göre uygulanan makine öğrenme algoritmalarından en yüksek başarım oranını K En Yakın Komşu algoritmasıyla nötr duygu durumları veri setinde elde edilmiştir. Çalışma otizmli çocukları TG’li akranlarından ayırt etmede %81.45’lik başarım oranına ulaşmıştır. Çalışmadan elde edilen bulgular gelecekte makine öğrenme algoritmalarına dayalı olarak geliştirilecek yazılımların otizm belirtilerinin klinik değerlendirmesinde kullanılabilirliği konusunda umut verici olarak kaydedilmiştir.

Etik Beyan

Araştırmanın etik onayı Gazi Üniversitesi Etik Komisyonu tarafından onaylanmıştır.

Destekleyen Kurum

Bu çalışma TÜBİTAK 115K459 nolu proje kapsamında yürütülmüştür.

Proje Numarası

Bu çalışma TÜBİTAK 115K459 nolu proje kapsamında yürütülmüştür.

Teşekkür

Bu çalışma TÜBİTAK 115K459 nolu proje kapsamında yürütülmüştür. Araştırmanın yürütülmesi için finansal destek sunan TÜBİTAK’a, çalışmaya katılım sağlayan tüm çocuk ve ebeveynlere teşekkür ederiz.

Kaynakça

  • Abbasi, B., & Goldenholz, D. M. (2019). Machine learning applications in epilepsy. Epilepsia, 60(10), 2037-2047. Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adeli, H. (2018). Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Computers in Biology and Medicine, 100, 270-278.
  • Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12(2), 169-177. Akın-Bülbül, I. A., & Özdemir, S. (2017). Ortak Dikkat Becerileri ve Otizm Spektrum Bozukluğu. Ondokuz Mayis University Journal of Education Faculty, 36(1), 195-220.
  • Akın-Bülbül, I., & Özdemir, S. (2021). An examination of visual attention: An eye tracking study on motor actions in children with ASD and TD children. Hacettepe University Journal of Education, 36(4), 871-885.
  • Alie, D., Mahoor, M. H., Mattson, W. I., Anderson, D. R., & Messinger, D. S. (2011, January). Analysis of eye gaze pattern of infants at risk of autism spectrum disorder using markov models. In 2011 IEEE Workshop on Applications of Computer Vision (WACV) (pp. 282-287). IEEE.
  • Albers, C. A., & Grieve, A. J. (2007). Test review: Bayley N. (2006). scales of infant and toddler development-third edition. San Antonio, TX: Harcourt assessment. Journal of Psychoeducational Assessment, 25(2), 180–190.
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.
  • Bal, E., Harden, E., Lamb, D., Van Hecke, A. V., Denver, J. W., & Porges, S. W. (2010). Emotion recognition in children with autism spectrum disorders: Relations to eye gaze and autonomic state. Journal of Autism and Developmental Disorders, 40(3), 358-370.
  • Barna, J., & Legerstee, M. (2005). Nine-and twelve-month-old infants relate emotions to people's actions. Cognition & Emotion, 19(1), 53-67.
  • Bayley, N. (1993). Bayley Scales of Infant Development—Second Edition. San Antonio, TX: The Psychological Corporation.
  • Bayley, N. (2006). Bayley Scales of Infant and Toddler Development (3rd ed.). Harcourt Assessment, San Antonio, TX.
  • Begeer, S., Koot, H. M., Rieffe, C., Terwogt, M. M., & Stegge, H. (2008). Emotional competence in children with autism: Diagnostic criteria and empirical evidence. Developmental Review, 28(3), 342-369.
  • Beyer, J. & Gammeltoft, L. (2007). Autism & Play. London, England: Jessica Kingsley Publishers.
  • Blijd-Hoogewys, E. M. A., Van Geert, P. L. C., Serra, M., & Minderaa, R. B. (2008). Measuring Theory of Mind in children. Psychometric properties of the ToM storybooks. Journal of Autism and Developmental Disorders, 38(10), 1907-1930.
  • Black, M. H., Chen, N. T., Iyer, K. K., Lipp, O. V., Bölte, S., Falkmer, M., ... & Girdler, S. (2017). Mechanisms of facial emotion recognition in autism spectrum disorders: Insights from eye tracking and electroencephalography. Neuroscience & Biobehavioral Reviews, 80, 488-515.
  • Bone, D., Goodwin, M. S., Black, M. P., Lee, C. C., Audhkhasi, K., & Narayanan, S. (2015). Applying machine learning to facilitate autism diagnostics: pitfalls and promises. Journal of Autism and Developmental Disorders, 45, 1121-1136.
  • Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J. M., & Herrera, F. (2014). A review of microarray datasets and applied feature selection methods. Information Sciences, 282, 111-135.
  • Bolte, S., Bartl-Pokorny, K.D., Jonsson, U., Berggren, S., Zhang, D., Kostrzewa, ... & Marschik, P.B. (2016). How can clinicians detect and treat autism early? Methodological trends of technology use in research. Acta Pediatr, 105(2), 137-144.
  • Boucher, J., Lewis, V., & Collis, G. M. (2000). Voice processing abilities in children with autism, children with specific language impairments, and young typically developing children. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 41(7), 847-857.
  • Canavan, S., Chen, M., Chen, S., Valdez, R., Yaeger, M., Lin, H., & Yin, L. (2017, September). Combining gaze and demographic feature descriptors for autism classification. In 2017 IEEE International Conference on Image Processing (ICIP) (pp. 3750-3754). IEEE.
  • Corden, B., Chilvers, R., & Skuse, D. (2008). Avoiding emotionally arousing stimuli predicts social–perceptual impairment in Asperger's syndrome. Neuropsychologia, 46(1), 137-147.
  • Chawarska, K., Macari, S., & Shic, F. (2012). Context modulates attention to social scenes in toddlers with autism. Journal of Child Psychology and Psychiatry, 53(8), 903-913.
  • Chawarska, K., & Volkmar, F. R. (2005). Autism in infancy and early childhood. Handbook of Autism and Pervasive Developmental Disorders, 1, 223-246.
  • Crane, L., Chester, J. W., Goddard, L., Henry, L. A., & Hill, E. (2016). Experiences of autism diagnosis: A survey of over 1000 parents in the United Kingdom. Autism, 20(2), 153-162.
  • Da Fonseca, D., Seguier, V., Santos, A., Poinso, F., & Deruelle, C. (2009). Emotion understanding in children with ADHD. Child Psychiatry and Human Development, 40(1), 111-121.
  • Dalton, K. M., Nacewicz, B. M., Johnstone, T., Schaefer, H. S., Gernsbacher, M. A., Goldsmith, H. H., ... & Davidson, R. J. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8(4), 519-526.
  • Dawson, G., Jones, E. J., Merkle, K., Venema, K., Lowy, R., Faja, S., … & Webb, S. J. (2012). Early behavioral intervention is associated with normalized brain activity in young children with autism. Journal of the American Academy of Child & Adolescent Psychiatry, 51(11), 1150-1159.
  • Dawson, G., Meltzoff, A. N., Osterling, J., Rinaldi, J., & Brown, E. (1998). Children with autism fail to orient to naturally occur social stimuli. Journal of Autism and Developmental Disorders, 28(6), 479-485.
  • Donadon, M. F., Martin-Santos, R., & Osório, F. L. (2019). Baby Faces: Development and psychometric study of a stimuli set based on babies’ emotions. Journal of Neuroscience Methods, 311, 178-185.
  • Elsabbagh, M., & Johnson, M. H. (2016). Autism and the social brain: the first-year puzzle. Biological Psychiatry, 80(2), 94-99.
  • Falck-Ytter, T., Bölte, S., & Gredebäck, G. (2013a). Eye tracking in early autism research. Journal of Neurodevelopmental Disorders, 5(1), 1-13.
  • Frazier, T. W., Klingemier, E. W., Parikh, S., Speer, L., Strauss, M. S., Eng, C., ... & Youngstrom, E. A. (2018). Development and Validation of objective and quantitative eye-tracking− based measures of autism risk and symptom levels. Journal of the American Academy of Child & Adolescent Psychiatry, 57(11), 858-866.
  • Happé, F., & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. Journal Of Autism And Developmental Disorders, 36(1), 5-25.
  • Harms, M. B., Martin, A., & Wallace, G. L. (2010). Facial emotion recognition in autism spectrum disorders: a review of behavioral and neuroimaging studies. Neuropsychology Review, 20(3), 290-322.
  • Hayhoe, M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in Cognitive Sciences, 9(4), 188-194. Hernandez, N., Metzger, A., Magné, R., Bonnet-Brilhault, F., Roux, S., Barthelemy, C.,
  • Martineau, J., (2009). Exploration of core features of a human face by healthy and autistic adults analyzed by visual scanning. Neuropsychologia, 47(4), 1004-1012.
  • Jacob, S., Wolff, J. J., Steinbach, M. S., Doyle, C. B., Kumar, V., & Elison, J. T. (2019). Neurodevelopmental heterogeneity and computational approaches for understanding autism. Translational Psychiatry, 9(1), 1-12.
  • Jiang, M., Francis, S. M., Srishyla, D., Conelea, C., Zhao, Q., & Jacob, S. (2019, July). Classifying individuals with ASD through facial emotion recognition and eye-tracking. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6063-6068). IEEE.
  • Jolliffe, T., & Baron‐Cohen, S. (1997). Are people with autism and Asperger syndrome faster than normal on the Embedded Figures Test?. Journal of Child Psychology and Psychiatry, 38(5), 527-534.
  • Kennedy, D. P., & Adolphs, R. (2011). Impaired fixation to eyes following amygdala damage arises from abnormal bottom-up attention (Reprinted from Neuropsychologia, vol 48, pg 3392-3398, 2010). Neuropsychologia, 49(4), 589-595.
  • Kennedy, D.P., Adolphs, R., 2012. Perception of emotions from facial expressions in high-functioning adults with autism. Neuropsychologia, 50(14), 3313-3319.
  • Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry, 59(9), 809-816.
  • Köse, S., Özbaran, B., & Erermiş, S. (2012). Otizm yelpaze bozukluklarında nöropsikolojik profil. Çocuk ve Gençlik Ruh Sağlığı Dergisi, 19(2), 103-115.
  • Król, M., & Król, M. (2019). The world as we know it and the world as it is: Eye‐movement patterns reveal decreased use of prior knowledge in individuals with autism. Autism Research, 12(9), 1386-1398.
  • Landa, R. J. (2008). Diagnosis of autism spectrum disorders in the first 3 years of life. Nature Clinical Practice Neurology, 4(3), 138-147.
  • Le Meur, O., Nebout, A., Cherel, M., & Etchamendy, E. (2020). From Kanner Autism to Asperger Syndromes, the Difficult Task to Predict Where ASD People Look at. IEEE Access, 8, 162132-162140.
  • Lindsay, G. W. (2020). Attention in psychology, neuroscience, and machine learning. Frontiers in Computational Neuroscience, 14(29), 1-21.
  • Liu, W., Li, M., & Yi, L. (2016). Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework. Autism Research, 9(8), 888-898.
  • Mastergeorge, A. M., Kahathuduwa, C., & Blume, J. (2021). Eye-tracking in infants and young children at risk for autism spectrum disorder: A systematic review of visual stimuli in experimental paradigms. Journal of Autism and Developmental Disorders, 51(8), 2578-2599.
  • McPartland, J. C., Webb, S. J., Keehn, B., & Dawson, G. (2011). Patterns of visual attention to faces and objects in autism spectrum disorder. Journal of Autism and Developmental Disorders, 41(2), 148-157.
  • Mei, J., Desrosiers, C., & Frasnelli, J. (2021). Machine learning for the diagnosis of Parkinson's disease: a review of literature. Frontiers in Aging Neuroscience, 13, 633752.
  • Meltzoff, A. N., & Prinz, W. (Eds.). (2002). The imitative mind: Development, evolution and brain bases (Vol. 6). Cambridge University Press.
  • Möricke, E., Buitelaar, J. K., & Rommelse, N. N. (2016). Do we need multiple informants when assessing autistic traits? The degree of report bias on offspring, self, and spouse ratings. Journal of Autism and Developmental Disorders, 46(1), 164-175.
  • Mundy, P. (2018). A review of joint attention and social‐cognitive brain systems in typical development and autism spectrum disorder. European Journal of Neuroscience, 47(6), 497-514.
  • Ozdemir, S., Akin-Bulbul, I., Kok, I., & Ozdemir, S. (2022). Development of a visual attention based decision support system for autism spectrum disorder screening. International Journal of Psychophysiology, 173(2022), 69-81.
  • Özdemir, S., Gürel-Selimoğlu, Ö., Töret, G., & Suna, H., E. (2017). Otizm spektrum bozukluğu olan çocuklar ve normal gelişim gösteren çocukların statik ve hareketli materyallerde yüz işlemelerinin karşılaştırılması. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Özel Eğitim Dergisi, 18 (2), 271-290.
  • Nogay, H. S., & Adeli, H. (2020). Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging. Reviews in the Neurosciences, 31(8), 825-841.
  • Ozonoff, S., Strayer, D. L., McMahon, W. M., & Filloux, F. (1994). Executive function abilities in autism and Tourette syndrome: An information processing approach. Journal of Child Psychology and Psychiatry, 35(6), 1015-1032.
  • Pavel, A. M., Rennie, J. M., de Vries, L. S., Blennow, M., Foran, A., Shah, D. K., ... & Boylan, G. B. (2020). A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial. The Lancet Child & Adolescent Health, 4(10), 740-749.
  • Palumbo, L., Burnett, H. G., & Jellema, T. (2015). Atypical emotional anticipation in high-functioning autism. Molecular Autism, 6(1), 47.
  • Pavlova, M. A., Guerreschi, M., Tagliavento, L., Gitti, F., Sokolov, A. N., Fallgatter, A. J., & Fazzi, E. (2017). Social cognition in autism: Face tuning. Scientific Reports, 7(1), 2734.
  • Pelphrey, K. A., Sasson, N. J., Reznick, J. S., Paul, G., Goldman, B. D., & Piven, J. (2002). Visual scanning of faces in autism. Journal of Autism and Developmental Disorders, 32(4), 249-261.
  • Pierce, K., Conant, D., Hazin, R., Stoner, R., & Desmond, J. (2011). Preference for geometric patterns early in life as a risk factor for autism. Archives of General Psychiatry, 68(1), 101-109.
  • Pierce, K., Marinero, S., Hazin, R., McKenna, B., Barnes, C. C., & Malige, A. (2016). Eye tracking reveals abnormal visual preference for geometric images as an early biomarker of an autism spectrum disorder subtype associated with increased symptom severity. Biological Psychiatry, 79(8), 657-666.
  • Robins, D.L., Casagrande, K., Barton, M., Chen, C.M., Dumont-Mathieu, T., Fein, D. (2013). Validation of the modified checklist for autism in toddlers, revised with follow-up (M-CHAT/R). Pediatrics 133(1), 37-45.
  • Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.
  • Samson, A. C., Phillips, J. M., Parker, K. J., Shah, S., Gross, J. J., & Hardan, A. Y. (2014). Emotion dysregulation and the core features of autism spectrum disorder. Journal of Autism and Developmental Disorders, 44(7), 1766-1772.
  • Schaller, U. M., Biscaldi, M., Burkhardt, A., Fleischhaker, C., Herbert, M., Isringhausen, A., ... & Rauh, R. (2021). ADOS-Eye-Tracking: The archimedean point of view and its absence in Autism Spectrum Conditions. Frontiers in Psychology, 12, 497.
  • Schultz, R. T. (2005). Developmental deficits in social perception in autism: the role of the amygdala and fusiform face area. International Journal of Developmental Neuroscience, 23(2-3), 125-141.
  • Shic, F., Macari, S., & Chawarska, K. (2014). Speech disturbs face scanning in 6-month-old infants who develop autism spectrum disorder. Biological Psychiatry, 75(3), 231-237.
  • Shic, F., Naples, A. J., Barney, E. C., Chang, S. A., Li, B., McAllister, T., ... & McPartland, J. C. (2022). The autism biomarkers consortium for clinical trials: evaluation of a battery of candidate eye-tracking biomarkers for use in autism clinical trials. Molecular Autism, 13(1), 1-17.
  • Stahl, D., Pickles, A., Elsabbagh, M., Johnson, M. H., & BASIS Team. (2012). Novel machine learning methods for ERP analysis: a validation from research on infants at risk for autism. Developmental neuropsychology, 37(3), 274-298.
  • Sterling, L., Dawson, G., Webb, S., Murias, M., Munson, J., Panagiotides, H., & Aylward, E. (2008). The role of face familiarity in eye tracking of faces by individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 38(9), 1666-1675.
  • Tebartz van Elst, L., Pick, M., Biscaldi, M., Fangmeier, T., & Riedel, A. (2013). High-functioning autism spectrum disorder as a basic disorder in adult psychiatry and psychotherapy: Psychopathological presentation, clinical relevance and therapeutic concepts. European Archives of Psychiatry and Clinical Neuroscience, 263(2), 189-196.
  • Tsang, V. (2018). Eye-tracking study on facial emotion recognition tasks in individuals with high-functioning autism spectrum disorders. Autism, 22(2), 161-170.
  • Uljarevic, M., & Hamilton, A. (2013). Recognition of emotions in autism: A formal meta-analysis. Journal of Autism and Developmental Disorders, 43(7), 1517-1526.
  • Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2020). Applying machine learning to kinematic and eye movement features of a movement imitation task to predict autism diagnosis. Scientific Reports, 10(1), 1-13.
  • Van Rijn, S., Urbanus, E., & Swaab, H. (2019). Eyetracking measures of social attention in young children: How gaze patterns translate to real‐life social behaviors. Social Development, 28(3), 564-580.
  • Wan, G., Kong, X., Sun, B., Yu, S., Tu, Y., Park, J., ... & Kong, J. (2019). Applying eye tracking to identify autism spectrum disorder in children. Journal of Autism and Developmental Disorders, 49(1), 209-215.
  • Wang, A. T., Dapretto, M., Hariri, A. R., Sigman, M., & Bookheimer, S. Y. (2004). Neural correlates of facial affect processing in children and adolescents with autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 43(4), 481-490.
  • Whitaker, L. R., Simpson, A., & Roberson, D. (2017). Brief report: Is impaired classification of subtle facial expressions in children with autism spectrum disorders related to atypical emotion category boundaries? Journal of Autism and Developmental Disorders, 47(8), 2628-2634.
  • Widen, S. C., & Russell, J. A. (2003). A closer look at preschoolers' freely produced labels for facial expressions. Developmental Psychology, 39(1), 114.
  • Wieckowski, A. T., Flynn, L. T., Richey, J. A., Gracanin, D., & White, S. W. (2020). Measuring change in facial emotion recognition in individuals with autism spectrum disorder: A systematic review. Autism, 24(7), 1607-1628.
  • Wright, B., Clarke, N., Jordan, J. O., Young, A. W., Clarke, P., Miles, J., ... & Williams, C. (2008). Emotion recognition in faces and the use of visual context Vo in young people with high-functioning autism spectrum disorders. Autism, 12(6), 607-626.
  • Yaneva, V., Eraslan, S., Yesilada, Y., & Mitkov, R. (2020). Detecting high-functioning autism in adults using eye tracking and machine learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(6), 1254-1261.
  • Yeung, M. K., & Chan, A. S. (2020). Executive function, motivation, and emotion recognition in high-functioning autism spectrum disorder. Research in Developmental Disabilities, 105, 103730.
  • Yirmiya, N., Erel, O., Shaked, M., & Solomonica-Levi, D. (1998). Meta-analyses comparing theory of mind abilities of individuals with autism, individuals with mental retardation, and normally developing individuals. Psychological Bulletin, 124(3), 283-307.
  • Yi, L., Fan, Y., Quinn, P. C., Feng, C., Huang, D., Li, J., ... & Lee, K. (2013). Abnormality in face scanning by children with autism spectrum disorder is limited to the eye region: Evidence from multi-method analyses of eye tracking data. Journal of Vision, 13(10), 1-13.
  • Zhao, Z., Zhang, X., Li, W., Hu, X., Qu, X., Cao, X., ... & Lu, J. (2019). Applying machine learning to identify autism with restricted kinematic features. IEEE Access, 7, 157614-157622.
  • Zwaigenbaum, L., Bryson, S., & Garon, N. (2013). Early identification of autism spectrum disorders. Behavioral Brain Research, 251(2), 133-146.
Toplam 89 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Görsel Algı
Bölüm Araştırma Makaleleri
Yazarlar

Işık Akın Bülbül 0000-0001-5964-6082

İbrahim Kök 0000-0001-9787-8079

Selda Özdemir 0000-0001-9205-5946

Proje Numarası Bu çalışma TÜBİTAK 115K459 nolu proje kapsamında yürütülmüştür.
Yayımlanma Tarihi 11 Kasım 2024
Gönderilme Tarihi 24 Ağustos 2024
Kabul Tarihi 3 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: Özel Sayı Kasım 2024

Kaynak Göster

APA Akın Bülbül, I., Kök, İ., & Özdemir, S. (2024). Otizm Belirtilerinin Erken Tespitinde Duygu Durumlarına Yöneltilen Görsel Dikkatin Makine Öğrenmesi Aracılığıyla Değerlendirilmesi. Türk Psikoloji Dergisi, 39(Özel Sayı Kasım 2024), 103-129. https://doi.org/10.31828/turkpsikoloji.1537964