Derleme
BibTex RIS Kaynak Göster

Beslenme ve Epigenetik

Yıl 2023, , 104 - 120, 30.12.2023
https://doi.org/10.51536/tusbad.1401741

Öz

Epigenetik DNA dizisindeki değişikliklerle açıklanamayan kromatin yapısındaki değişklikleri ifade eder. Besinler, DNA metilasyonu ve histon modifikasyonları gibi epigenetik olayları tersine çevirebilir veya değiştirebilir. Besinlerin ve biyoaktif gıda bileşenlerinin, global DNA metilasyonunu ve gen ifadesiyle yakından ilişkili olan gene özgü promotör DNA metilasyonunu veya histon modifikasyonlarını etkileyerek epigenetik olayları etkileyebileceği görülmektedir. Epigenetik artık cazip bir beslenme müdahalesi alanı olarak kabul edilmektedir. Çeşitli yaşam evrelerindeki beslenme durumu DNA metilasyonunu etkilemektedir. Fetal gelişim sırasında annenin yetersiz beslenmesi yada aşırı beslenmesi DNA metilasyon değişiklikleriyle ilişkilidir ve epigenetik değişikliklere neden olur. DNA metilasyonunun fetal programlama ile ilişkili zararlı sağlık etkilerine, özellikle de obezite ve tip 2 diyabet riskine katkıda bulunabileceği bulunmuştur. Bu hastalıklar için bir tedavi geliştirme veya önleyici tedbirler keşfetme olasılığı heyecan verici olsa da, beslenme epigenetiği alanındaki mevcut bilgiler sınırlıdır ve mevcut kaynakları genişletmek ve sağlığımızı korumak ve değiştirilebilir epigenetik mekanizmalar yoluyla hastalıkları önlemek için besinlerin veya biyoaktif gıda bileşenlerinin kullanımını daha iyi anlamak için daha fazla çalışmaya ihtiyaç vardır.

Kaynakça

  • 1. Peixoto, P., Cartron, P. F., Serandour, A. A., & Hervouet, E. (2020). From 1957 to Nowadays: A Brief History of Epigenetics. International journal of molecular sciences, 21(20), 7571. https://doi.org/10.3390/ijms21207571
  • 2. Noble D. Conrad Waddington and the origin of epigenetics. J Exp Biol. 2015;218(Pt 6):816‐818.
  • 3. Gao, F., & Das, S. K. (2014). Epigenetic regulations through DNA methylation and hydroxymethylation: clues for early pregnancy in decidualization. Biomolecular concepts, 5(2), 95–107. https://doi.org/10.1515/bmc-2013-0036
  • 4. Liu, R., Wu, J., Guo, H., Yao, W., Li, S., Lu, Y., Jia, Y., Liang, X., Tang, J., & Zhang, H. (2023). Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm, 4(3), e292. https://doi.org/10.1002/mco2.292
  • 5. H. Ding, L. Zhang, Q. Yang, X. Zhang, X. Li Chapter five - epigenetics in kidney diseases G.S. Makowski (Ed.), Advances in Clinical Chemistry, vol. 104, Elsevier (2021), pp. 233-297
  • 6. Elhamamsy AR. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet. 2017;34(5):549‐652.
  • 7. Linner A, Almgren M. Epigenetic programming‐The important first 1000 days. Acta Paediatr. 2020;109(3):443‐452.
  • 8. Siddeek B, Li N, Mauduit C, et al. Transient postnatal over nutrition induces long‐term alterations in cardiac NLRP3‐inflammasome pathway. Nutr Metab Cardiovasc Dis. 2018;28(9):944‐951.
  • 9. Blin G, Liand M, Mauduit C, et al. Maternal exposure to high‐fat diet induces long‐term derepressive chromatin marks in the heart. Nutrients. 2020;12(1):181.
  • 10. Siddeek B, Mauduit C, Chehade H, et al. Long‐term impact of maternal high‐fat diet on offspring cardiac health: role of micro‐RNA biogenesis. Cell Death Discov. 2019;5:71.
  • 11. Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1(1):8‐16.
  • 12. Wang Y, Surzenko N, Friday WB, Zeisel SH. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. FASEB J. 2016;30(4):1566‐1578.
  • 13. Palli S. R. (2021). Epigenetic regulation of post-embryonic development. Current opinion in insect science, 43, 63–69. https://doi.org/10.1016/j.cois.2020.09.011
  • 14. Xu, R., Li, C., Liu, X., & Gao, S. (2021). Insights into epigenetic patterns in mammalian early embryos. Protein & cell, 12(1), 7–28. https://doi.org/10.1007/s13238-020-00757
  • 15. Wu, S., Zhang, J., Li, F., Du, W., Zhou, X., Wan, M., Fan, Y., Xu, X., Zhou, X., Zheng, L., & Zhou, Y. (2019). One-Carbon Metabolism Links Nutrition Intake to Embryonic Development via Epigenetic Mechanisms. Stem cells international, 2019, 3894101. https://doi.org/10.1155/2019/3894101
  • 16. Ashapkin, V. V., Kutueva, L. I., & Vanyushin, B. F. (2017). Aging as an Epigenetic Phenomenon. Current genomics, 18(5), 385–407. https://doi.org/10.2174/1389202918666170412112130
  • 17. Kane, A. E., & Sinclair, D. A. (2019). Epigenetic changes during aging and their reprogramming potential. Critical reviews in biochemistry and molecular biology, 54(1), 61–83. https://doi.org/10.1080/10409238.2019.1570075
  • 18. Wang, K., Liu, H., Hu, Q., Wang, L., Liu, J., Zheng, Z., Zhang, W., Ren, J., Zhu, F., & Liu, G. H. (2022). Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal transduction and targeted therapy, 7(1), 374. https://doi.org/10.1038/s41392-022-01211-8
  • 19. Yu, M., Hazelton, W. D., Luebeck, G. E., & Grady, W. M. (2020). Epigenetic Aging: More Than Just a Clock When It Comes to Cancer. Cancer research, 80(3), 367–374. https://doi.org/10.1158/0008-5472.CAN-19-0924
  • 20. Ilango, S., Paital, B., Jayachandran, P., Padma, P. R., & Nirmaladevi, R. (2020). Epigenetic alterations in cancer. Frontiers in bioscience (Landmark edition), 25(6), 1058–1109. https://doi.org/10.2741/4847
  • 21. Butera, A., Melino, G., & Amelio, I. (2021). Epigenetic "Drivers" of Cancer. Journal of molecular biology, 433(15), 167094. https://doi.org/10.1016/j.jmb.2021.167094
  • 22. Kirkland JB. Niacin status impacts chromatin structure. J Nutr. 2009;139:2397–401
  • 23. Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1:8–16.
  • 24. Uysal, F., Akkoyunlu, G., & Ozturk, S. (2016). DNA methyltransferases exhibit dynamic expression during spermatogenesis. Reproductive biomedicine online, 33(6), 690–702. https://doi.org/10.1016/j.rbmo.2016.08.022
  • 25. Yano N, Fedulov AV. Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines. 2023; 11(5):1334. https://doi.org/10.3390/biomedicines11051334
  • 26. Uekawa A, Katsushima K, Ogata A, Kawata T, Maeda N, Kobayashi K, Maekawa A, Tadokoro T, Yamamoto Y. Change of epigenetic control of cystathionine beta-synthase gene expression through dietary vitamin B12 is not recovered by methionine supplementation. J Nutrigenet Nutrigenomics. 2009;2:29–36
  • 27. Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006;20:43–9
  • 28. Anderson, O.S.; Sant, K.E.; Dolinoy, D.C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 2012, 23, 853–859.
  • 29. Barouki, R.; Gluckman, P.D.; Grandjean, P.; Hanson, M.; Heindel, J.J. Developmental origins of non-communicable disease: Implications for research and public health. Environ. Health 2012, 11, 42.
  • 30. Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049.
  • 31. Chao, W.; D’Amore, P.A. IGF2: Epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 2008, 19, 111–120.
  • 32. Tobi, E.; Lumey, L.H.; Talens, R.P.; Kremer, D.; Putter, H.; Stein, A.; Slagboom, P.; Heijmans, B.T. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 2009, 18, 4046–4053.
  • 33. Tobi, E.W.; Slieker, R.C.; Luijk, R.; Dekkers, K.F.; Stein, A.D.; Xu, K.M.; Slagboom, P.E.; van Zwet, E.W.; Lumey, L.H.; Heijmans, B.T.; et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci. Adv. 2018, 4, eaao4364.
  • 34. Hoyo, C.; Murtha, A.P.; Schildkraut, J.M.; Jirtle, R.L.; Demark-Wahnefried, W.; Forman, M.R.; Iversen, E.S.; Kurtzberg, J.; Overcash, F.; Huang, Z.; et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics 2011, 6, 928–936.
  • 35. Godfrey, K.M.; Sheppard, A.; Gluckman, P.D.; Lillycrop, K.A.; Burdge, G.C.; McLean, C.; Rodford, J.; Slater-Jefferies, J.L.; Garratt, E.; Crozier, S.R.; et al. Epigenetic Gene Promoter Methylation at Birth Is Associated With Child’s Later Adiposity. Diabetes 2011, 60, 1528–1534.
  • 36. Amarasekera, M.; Martino, D.; Ashley, S.; Harb, H.; Kesper, D.; Strickland, D.; Saffery, R.; Prescott, S.L. Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57 -imprinting regulator in humans. FASEB J. 2014, 28, 4068–4076.
  • 37. Azzi, S.; Sas, T.C.J.; Koudou, Y.; Le Bouc, Y.; Souberbielle, J.-C.; Dargent-Molina, P.; Netchine, I.; Charles, M.A. Degree of methylation ofZAC1(PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 2014, 9, 338–345.
  • 38. Martin, C.L.; Jima, D.; Sharp, G.C.; McCullough, L.E.; Park, S.S.; Gowdy, K.; Skaar, D.; Cowley, M.; Maguire, R.L.; Fuemmeler, B.; et al. Maternal pre-pregnancy obesity, offspring cord blood DNA methylation, and offspring cardiometabolic health in early childhood: An epigenome-wide association study. Epigenetics 2019, 14, 325–340.
  • 39. Margerison-Zilko, C.E.; Shrimali, B.P.; Eskenazi, B.; Lahiff, M.; Lindquist, A.R.; Abrams, B.F. Trimester of Maternal Gestational Weight Gain and Offspring Body Weight at Birth and Age Five. Matern. Child Health J. 2012, 16, 1215–1223.
  • 40. Nogues, P.; Dos Santos, E.; Jammes, H.; Berveiller, P.; Arnould, L.; Vialard, F.; Dieudonné, M.-N. Maternal obesity influences expression and DNA methylation of the adiponectin and leptin systems in human third-trimester placenta. Clin. Epigenetics 2019, 11, 20.
  • 41. Bouchard, L.; Thibault, S.; Guay, S.-P.; Santure, M.; Monpetit, A.; St-Pierre, J.; Perron, P.; Brisson, D. Leptin Gene Epigenetic Adaptation to Impaired Glucose Metabolism During Pregnancy. Diabetes Care 2010, 33, 2436–2441.
  • 42. Richmond, R.C.; Simpkin, A.J.; Woodward, G.; Gaunt, T.R.; Lyttleton, O.; McArdle, W.L.; Ring, S.M.; Smith, A.D.; Timpson, N.J.; Tilling, K.; et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum. Mol. Genet. 2015, 24, 2201–2217.
  • 43. Küpers, L.K.; Xu, X.; Jankipersadsing, S.A.; Vaez, A.; Gemert, S.L.B.-V.; Scholtens, S.; Nolte, I.M.; Richmond, R.C.; Relton, C.L.; Felix, J.F.; et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int. J. Epidemiology 2015, 44, 1224–1237.
  • 44. Van Dijk, S.J.; EpiSCOPE, M.O.; Molloy, P.; Varinli, H.; Morrison, J.; Muhlhausler, B.S. Epigenetics and human obesity. Int. J. Obes. 2015, 39, 85–97.
  • 45. Ling, C.; Groop, L. Epigenetics: A Molecular Link Between Environmental Factors and Type 2 Diabetes. Diabetes 2009, 58, 2718–2725.
  • 46. Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137:S223–8
  • 47. Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem. 2010;17:2141–51
  • 48. Qin W, Zhu W, Shi H, Hewett JE, Ruhlen RL, MacDonald RS, Rottinghaus GE, Chen YC, Sauter ER. Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer. 2009;61:238–44
  • 49. Raynal NJ, Charbonneau M, Momparler LF, Momparler RL. Synergistic effect of 5-Aza-2′-deoxycytidine and genistein in combination against leukemia. Oncol Res. 2008;17:223–30
  • 50. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr. 2008;100:278–82
  • 51. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007;97:1064–73
  • 52. Widiker S, Karst S, Wagener A, Brockmann GA. High-fat diet leads to a decreased methylation of the Mc4r gene in the obese BFMI and the lean B6 mouse lines. J Appl Genet. 2010;51:193–7
  • 53. Kaminen-Ahola N, Ahola A, Maga M, Mallitt KA, Fahey P, Cox TC, Whitelaw E, Chong S. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet. 2010;6:e1000811.
  • 54. Henikoff, S., & Smith, M. M. (2015). Histone variants and epigenetics. Cold Spring Harbor perspectives in biology, 7(1), a019364. https://doi.org/10.1101/cshperspect.a019364
  • 55. Cheng X, Blumenthal RM. Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry. 2010;49:2999–3008
  • 56. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000;97:10014–9
  • 57. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002;1:287–99
  • 58. Ara AI, Xia M, Ramani K, Mato JM, Lu SC. S-adenosylmethionine inhibits lipopolysaccharide-induced gene expression via modulation of histone methylation. Hepatology. 2008;47:1655–66
  • 59. Kim BG, Chun TG, Lee HY, Snapper ML. A new structural class of S-adenosylhomocysteine hydrolase inhibitors. Bioorg Med Chem. 2009;17:6707–14
  • 60. Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature. 2009;458:757–61
  • 61. Zempleni J, Chew YC, Bao B, Pestinger V, Wijeratne SS. Repression of transposable elements by histone biotinylation. J Nutr. 2009;139:2389–92
  • 62. Hassan YI, Zempleni J. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase. Nutr Rev. 2008;66:721–5
  • 63. Camporeale G, Giordano E, Rendina R, Zempleni J, Eissenberg JC. Drosophila melanogaster holocarboxylase synthetase is a chromosomal protein required for normal histone biotinylation, gene transcription patterns, lifespan, and heat tolerance. J Nutr. 2006;136:2735–42
  • 64. Healy S, Perez-Cadahia B, Jia D, McDonald MK, Davie JR, Gravel RA. Biotin is not a natural histone modification. Biochim Biophys Acta. 1789;2009:719–33
  • 65. Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta. Epub May 20.
  • 66. Li Y. (2021). Modern epigenetics methods in biological research. Methods (San Diego, Calif.), 187, 104–113. https://doi.org/10.1016/j.ymeth.2020.06.022

Nutrition and Epigenetic

Yıl 2023, , 104 - 120, 30.12.2023
https://doi.org/10.51536/tusbad.1401741

Öz

Epigenetics refers to changes in chromatin structure that cannot be explained by alterations in the DNA sequence. Nutrients have the ability to reverse or modify epigenetic events such as DNA methylation and histone modifications. It has been observed that nutrients and bioactive food components can influence epigenetic events by affecting global DNA methylation and gene-specific promoter DNA methylation or histone modifications, which are closely associated with gene expression. Epigenetics is now considered an appealing area for nutritional intervention. The nutritional status at various stages of life affects DNA methylation. Maternal undernutrition or overnutrition during fetal development is associated with DNA methylation changes and leads to epigenetic alterations. It has been found that DNA methylation may contribute to adverse health effects associated with fetal programming, particularly in relation to obesity and type 2 diabetes risk. While the possibility of developing treatments or preventive measures for these diseases is exciting, the current knowledge in the field of nutritional epigenetics is limited, and further research is needed to better understand the use of nutrients or bioactive food components in preserving our health and preventing diseases through modifiable epigenetic mechanisms.

Kaynakça

  • 1. Peixoto, P., Cartron, P. F., Serandour, A. A., & Hervouet, E. (2020). From 1957 to Nowadays: A Brief History of Epigenetics. International journal of molecular sciences, 21(20), 7571. https://doi.org/10.3390/ijms21207571
  • 2. Noble D. Conrad Waddington and the origin of epigenetics. J Exp Biol. 2015;218(Pt 6):816‐818.
  • 3. Gao, F., & Das, S. K. (2014). Epigenetic regulations through DNA methylation and hydroxymethylation: clues for early pregnancy in decidualization. Biomolecular concepts, 5(2), 95–107. https://doi.org/10.1515/bmc-2013-0036
  • 4. Liu, R., Wu, J., Guo, H., Yao, W., Li, S., Lu, Y., Jia, Y., Liang, X., Tang, J., & Zhang, H. (2023). Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm, 4(3), e292. https://doi.org/10.1002/mco2.292
  • 5. H. Ding, L. Zhang, Q. Yang, X. Zhang, X. Li Chapter five - epigenetics in kidney diseases G.S. Makowski (Ed.), Advances in Clinical Chemistry, vol. 104, Elsevier (2021), pp. 233-297
  • 6. Elhamamsy AR. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet. 2017;34(5):549‐652.
  • 7. Linner A, Almgren M. Epigenetic programming‐The important first 1000 days. Acta Paediatr. 2020;109(3):443‐452.
  • 8. Siddeek B, Li N, Mauduit C, et al. Transient postnatal over nutrition induces long‐term alterations in cardiac NLRP3‐inflammasome pathway. Nutr Metab Cardiovasc Dis. 2018;28(9):944‐951.
  • 9. Blin G, Liand M, Mauduit C, et al. Maternal exposure to high‐fat diet induces long‐term derepressive chromatin marks in the heart. Nutrients. 2020;12(1):181.
  • 10. Siddeek B, Mauduit C, Chehade H, et al. Long‐term impact of maternal high‐fat diet on offspring cardiac health: role of micro‐RNA biogenesis. Cell Death Discov. 2019;5:71.
  • 11. Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1(1):8‐16.
  • 12. Wang Y, Surzenko N, Friday WB, Zeisel SH. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. FASEB J. 2016;30(4):1566‐1578.
  • 13. Palli S. R. (2021). Epigenetic regulation of post-embryonic development. Current opinion in insect science, 43, 63–69. https://doi.org/10.1016/j.cois.2020.09.011
  • 14. Xu, R., Li, C., Liu, X., & Gao, S. (2021). Insights into epigenetic patterns in mammalian early embryos. Protein & cell, 12(1), 7–28. https://doi.org/10.1007/s13238-020-00757
  • 15. Wu, S., Zhang, J., Li, F., Du, W., Zhou, X., Wan, M., Fan, Y., Xu, X., Zhou, X., Zheng, L., & Zhou, Y. (2019). One-Carbon Metabolism Links Nutrition Intake to Embryonic Development via Epigenetic Mechanisms. Stem cells international, 2019, 3894101. https://doi.org/10.1155/2019/3894101
  • 16. Ashapkin, V. V., Kutueva, L. I., & Vanyushin, B. F. (2017). Aging as an Epigenetic Phenomenon. Current genomics, 18(5), 385–407. https://doi.org/10.2174/1389202918666170412112130
  • 17. Kane, A. E., & Sinclair, D. A. (2019). Epigenetic changes during aging and their reprogramming potential. Critical reviews in biochemistry and molecular biology, 54(1), 61–83. https://doi.org/10.1080/10409238.2019.1570075
  • 18. Wang, K., Liu, H., Hu, Q., Wang, L., Liu, J., Zheng, Z., Zhang, W., Ren, J., Zhu, F., & Liu, G. H. (2022). Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal transduction and targeted therapy, 7(1), 374. https://doi.org/10.1038/s41392-022-01211-8
  • 19. Yu, M., Hazelton, W. D., Luebeck, G. E., & Grady, W. M. (2020). Epigenetic Aging: More Than Just a Clock When It Comes to Cancer. Cancer research, 80(3), 367–374. https://doi.org/10.1158/0008-5472.CAN-19-0924
  • 20. Ilango, S., Paital, B., Jayachandran, P., Padma, P. R., & Nirmaladevi, R. (2020). Epigenetic alterations in cancer. Frontiers in bioscience (Landmark edition), 25(6), 1058–1109. https://doi.org/10.2741/4847
  • 21. Butera, A., Melino, G., & Amelio, I. (2021). Epigenetic "Drivers" of Cancer. Journal of molecular biology, 433(15), 167094. https://doi.org/10.1016/j.jmb.2021.167094
  • 22. Kirkland JB. Niacin status impacts chromatin structure. J Nutr. 2009;139:2397–401
  • 23. Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1:8–16.
  • 24. Uysal, F., Akkoyunlu, G., & Ozturk, S. (2016). DNA methyltransferases exhibit dynamic expression during spermatogenesis. Reproductive biomedicine online, 33(6), 690–702. https://doi.org/10.1016/j.rbmo.2016.08.022
  • 25. Yano N, Fedulov AV. Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines. 2023; 11(5):1334. https://doi.org/10.3390/biomedicines11051334
  • 26. Uekawa A, Katsushima K, Ogata A, Kawata T, Maeda N, Kobayashi K, Maekawa A, Tadokoro T, Yamamoto Y. Change of epigenetic control of cystathionine beta-synthase gene expression through dietary vitamin B12 is not recovered by methionine supplementation. J Nutrigenet Nutrigenomics. 2009;2:29–36
  • 27. Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006;20:43–9
  • 28. Anderson, O.S.; Sant, K.E.; Dolinoy, D.C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 2012, 23, 853–859.
  • 29. Barouki, R.; Gluckman, P.D.; Grandjean, P.; Hanson, M.; Heindel, J.J. Developmental origins of non-communicable disease: Implications for research and public health. Environ. Health 2012, 11, 42.
  • 30. Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049.
  • 31. Chao, W.; D’Amore, P.A. IGF2: Epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 2008, 19, 111–120.
  • 32. Tobi, E.; Lumey, L.H.; Talens, R.P.; Kremer, D.; Putter, H.; Stein, A.; Slagboom, P.; Heijmans, B.T. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 2009, 18, 4046–4053.
  • 33. Tobi, E.W.; Slieker, R.C.; Luijk, R.; Dekkers, K.F.; Stein, A.D.; Xu, K.M.; Slagboom, P.E.; van Zwet, E.W.; Lumey, L.H.; Heijmans, B.T.; et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci. Adv. 2018, 4, eaao4364.
  • 34. Hoyo, C.; Murtha, A.P.; Schildkraut, J.M.; Jirtle, R.L.; Demark-Wahnefried, W.; Forman, M.R.; Iversen, E.S.; Kurtzberg, J.; Overcash, F.; Huang, Z.; et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics 2011, 6, 928–936.
  • 35. Godfrey, K.M.; Sheppard, A.; Gluckman, P.D.; Lillycrop, K.A.; Burdge, G.C.; McLean, C.; Rodford, J.; Slater-Jefferies, J.L.; Garratt, E.; Crozier, S.R.; et al. Epigenetic Gene Promoter Methylation at Birth Is Associated With Child’s Later Adiposity. Diabetes 2011, 60, 1528–1534.
  • 36. Amarasekera, M.; Martino, D.; Ashley, S.; Harb, H.; Kesper, D.; Strickland, D.; Saffery, R.; Prescott, S.L. Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57 -imprinting regulator in humans. FASEB J. 2014, 28, 4068–4076.
  • 37. Azzi, S.; Sas, T.C.J.; Koudou, Y.; Le Bouc, Y.; Souberbielle, J.-C.; Dargent-Molina, P.; Netchine, I.; Charles, M.A. Degree of methylation ofZAC1(PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 2014, 9, 338–345.
  • 38. Martin, C.L.; Jima, D.; Sharp, G.C.; McCullough, L.E.; Park, S.S.; Gowdy, K.; Skaar, D.; Cowley, M.; Maguire, R.L.; Fuemmeler, B.; et al. Maternal pre-pregnancy obesity, offspring cord blood DNA methylation, and offspring cardiometabolic health in early childhood: An epigenome-wide association study. Epigenetics 2019, 14, 325–340.
  • 39. Margerison-Zilko, C.E.; Shrimali, B.P.; Eskenazi, B.; Lahiff, M.; Lindquist, A.R.; Abrams, B.F. Trimester of Maternal Gestational Weight Gain and Offspring Body Weight at Birth and Age Five. Matern. Child Health J. 2012, 16, 1215–1223.
  • 40. Nogues, P.; Dos Santos, E.; Jammes, H.; Berveiller, P.; Arnould, L.; Vialard, F.; Dieudonné, M.-N. Maternal obesity influences expression and DNA methylation of the adiponectin and leptin systems in human third-trimester placenta. Clin. Epigenetics 2019, 11, 20.
  • 41. Bouchard, L.; Thibault, S.; Guay, S.-P.; Santure, M.; Monpetit, A.; St-Pierre, J.; Perron, P.; Brisson, D. Leptin Gene Epigenetic Adaptation to Impaired Glucose Metabolism During Pregnancy. Diabetes Care 2010, 33, 2436–2441.
  • 42. Richmond, R.C.; Simpkin, A.J.; Woodward, G.; Gaunt, T.R.; Lyttleton, O.; McArdle, W.L.; Ring, S.M.; Smith, A.D.; Timpson, N.J.; Tilling, K.; et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum. Mol. Genet. 2015, 24, 2201–2217.
  • 43. Küpers, L.K.; Xu, X.; Jankipersadsing, S.A.; Vaez, A.; Gemert, S.L.B.-V.; Scholtens, S.; Nolte, I.M.; Richmond, R.C.; Relton, C.L.; Felix, J.F.; et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int. J. Epidemiology 2015, 44, 1224–1237.
  • 44. Van Dijk, S.J.; EpiSCOPE, M.O.; Molloy, P.; Varinli, H.; Morrison, J.; Muhlhausler, B.S. Epigenetics and human obesity. Int. J. Obes. 2015, 39, 85–97.
  • 45. Ling, C.; Groop, L. Epigenetics: A Molecular Link Between Environmental Factors and Type 2 Diabetes. Diabetes 2009, 58, 2718–2725.
  • 46. Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137:S223–8
  • 47. Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem. 2010;17:2141–51
  • 48. Qin W, Zhu W, Shi H, Hewett JE, Ruhlen RL, MacDonald RS, Rottinghaus GE, Chen YC, Sauter ER. Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer. 2009;61:238–44
  • 49. Raynal NJ, Charbonneau M, Momparler LF, Momparler RL. Synergistic effect of 5-Aza-2′-deoxycytidine and genistein in combination against leukemia. Oncol Res. 2008;17:223–30
  • 50. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr. 2008;100:278–82
  • 51. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007;97:1064–73
  • 52. Widiker S, Karst S, Wagener A, Brockmann GA. High-fat diet leads to a decreased methylation of the Mc4r gene in the obese BFMI and the lean B6 mouse lines. J Appl Genet. 2010;51:193–7
  • 53. Kaminen-Ahola N, Ahola A, Maga M, Mallitt KA, Fahey P, Cox TC, Whitelaw E, Chong S. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet. 2010;6:e1000811.
  • 54. Henikoff, S., & Smith, M. M. (2015). Histone variants and epigenetics. Cold Spring Harbor perspectives in biology, 7(1), a019364. https://doi.org/10.1101/cshperspect.a019364
  • 55. Cheng X, Blumenthal RM. Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry. 2010;49:2999–3008
  • 56. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000;97:10014–9
  • 57. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002;1:287–99
  • 58. Ara AI, Xia M, Ramani K, Mato JM, Lu SC. S-adenosylmethionine inhibits lipopolysaccharide-induced gene expression via modulation of histone methylation. Hepatology. 2008;47:1655–66
  • 59. Kim BG, Chun TG, Lee HY, Snapper ML. A new structural class of S-adenosylhomocysteine hydrolase inhibitors. Bioorg Med Chem. 2009;17:6707–14
  • 60. Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature. 2009;458:757–61
  • 61. Zempleni J, Chew YC, Bao B, Pestinger V, Wijeratne SS. Repression of transposable elements by histone biotinylation. J Nutr. 2009;139:2389–92
  • 62. Hassan YI, Zempleni J. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase. Nutr Rev. 2008;66:721–5
  • 63. Camporeale G, Giordano E, Rendina R, Zempleni J, Eissenberg JC. Drosophila melanogaster holocarboxylase synthetase is a chromosomal protein required for normal histone biotinylation, gene transcription patterns, lifespan, and heat tolerance. J Nutr. 2006;136:2735–42
  • 64. Healy S, Perez-Cadahia B, Jia D, McDonald MK, Davie JR, Gravel RA. Biotin is not a natural histone modification. Biochim Biophys Acta. 1789;2009:719–33
  • 65. Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta. Epub May 20.
  • 66. Li Y. (2021). Modern epigenetics methods in biological research. Methods (San Diego, Calif.), 187, 104–113. https://doi.org/10.1016/j.ymeth.2020.06.022
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beslenme Bilimi
Bölüm Derleme
Yazarlar

Filiz Yeşilırmak

Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 7 Aralık 2023
Kabul Tarihi 25 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yeşilırmak, F. (2023). Beslenme ve Epigenetik. Türkiye Sağlık Bilimleri Ve Araştırmaları Dergisi, 6(3), 104-120. https://doi.org/10.51536/tusbad.1401741
AMA Yeşilırmak F. Beslenme ve Epigenetik. Türkiye Sağlık Bilimleri ve Araştırmaları Dergisi. Aralık 2023;6(3):104-120. doi:10.51536/tusbad.1401741
Chicago Yeşilırmak, Filiz. “Beslenme Ve Epigenetik”. Türkiye Sağlık Bilimleri Ve Araştırmaları Dergisi 6, sy. 3 (Aralık 2023): 104-20. https://doi.org/10.51536/tusbad.1401741.
EndNote Yeşilırmak F (01 Aralık 2023) Beslenme ve Epigenetik. Türkiye Sağlık Bilimleri ve Araştırmaları Dergisi 6 3 104–120.
IEEE F. Yeşilırmak, “Beslenme ve Epigenetik”, Türkiye Sağlık Bilimleri ve Araştırmaları Dergisi, c. 6, sy. 3, ss. 104–120, 2023, doi: 10.51536/tusbad.1401741.
ISNAD Yeşilırmak, Filiz. “Beslenme Ve Epigenetik”. Türkiye Sağlık Bilimleri ve Araştırmaları Dergisi 6/3 (Aralık 2023), 104-120. https://doi.org/10.51536/tusbad.1401741.
JAMA Yeşilırmak F. Beslenme ve Epigenetik. Türkiye Sağlık Bilimleri ve Araştırmaları Dergisi. 2023;6:104–120.
MLA Yeşilırmak, Filiz. “Beslenme Ve Epigenetik”. Türkiye Sağlık Bilimleri Ve Araştırmaları Dergisi, c. 6, sy. 3, 2023, ss. 104-20, doi:10.51536/tusbad.1401741.
Vancouver Yeşilırmak F. Beslenme ve Epigenetik. Türkiye Sağlık Bilimleri ve Araştırmaları Dergisi. 2023;6(3):104-20.