Araştırma Makalesi
BibTex RIS Kaynak Göster

Impact of Different Irrigation Systems on the Physical Quality of Weak Structured Soil

Yıl 2024, , 38 - 47, 03.04.2024
https://doi.org/10.19159/tutad.1385740

Öz

In recent decades, agricultural sustainability has been negatively affected by the structural degradation of soils resulting from excessive land use. In this research, the impact of different irrigation methods applied for five years in a region experiencing crusting issues on the soil's physical quality was investigated. Soil samples were taken from a region where wheat is grown and four different irrigation systems [Natural rainfall (NR), linear pivot irrigation (LPI), subsurface drip irrigation (SDI), and sprinkler irrigation (SI)] are employed, at depths of 0-20 cm, from both degraded and undegraded soils. The soil's mean weight diameter (MWD), water-resistant aggregates (WRA), saturation level (Θs), field capacity (FC), wilting point, available water content (AWC), aeration capacity, modulus of rupture, plastic limit (PL), liquid limit (LL), and plasticity index (PI) were determined. The soil's WRA were found to be the lowest at 7.76% in the NR, but this result increased by 150.64% to 19.45% in the SDI. The MWD values of the soils in the NR system were found to be 0.178 mm and it has been found to increase in the SDI system, reaching 0.467 mm. In the SDI system, the highest values were obtained for Θs, FC, and AWC. While the modulus of rupture was found to be 151.56 kPA in the NR, it was found 154.4, 44.78 and 154.2 kPA in the LPI, SDI and SI areas, respectively. The PL, LL, and PI values of the soils were not affected by different irrigation systems, and values were determined as 44.57%, 21.14%, and 23.44%, on average respectively. In this direction, the necessity of monitoring the results of soil aggregate stability and water characteristics for many years and examining them in different soil types has emerged. In addition, it has been suggested that the possible effects of irrigation systems should be considered for the sustainable use of lands.

Kaynakça

  • Anonymous, 2010. Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. American Society for the Testing and Materials, ASTM Book of Standards Soil and Rock (I): D420-D5876.
  • Abdullateef, Z.A., El- Ghamry, A.M., Jasim, A.A., EL-Hadidi, E.M., Ghazi, D.A., 2022. Effect of different irrigation systems on some physical properties of soil, growth and yield of cotton crop. Journal of Soil Sciences and Agricultural Engineering, 13(12): 393-396.
  • Alvarez, R., Steinbach, H.S., 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research, 104(1): 1-15.
  • Amezketa, E., Aragüés, R., Carranza, R., Urgel, B., 2003. Macro-and micro-aggregate stability of soils determined by a combination of wet-sieving and laser-ray diffraction. Spanish Journal of Agricultural Research, 1(4): 83-94.
  • Aon, M., Aslam, Z., Hussain, S., Bashir, M.A., Shaaban, M., Masood, S., Iqbal, S., Khalid, M., Rehim, A., Mosa, W.F.A., Sas-Paszt, L., Marey, S.A., Hatamleh, A.A., 2023. Wheat straw biochar produced at a low temperature enhanced maize growth and yield by influencing soil properties of typic calciargid. Sustainability, 15(12): 9488.
  • Barzegar, A.R., Yousefi, A., Daryashenas, A., 2002. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant and Soil, 247(2): 295-301.
  • Blanco-Canqui, H., Klocke, N., Schlegel, A., Stone, L., Rice, C., 2010. Impacts of deficit irrigation on carbon sequestration and soil physical properties under no‐till. Soil Science Society of America Journal, 74(4): 1301-1309.
  • Blanco-Canqui, H., Ruis, S.J., 2020. Cover crop impacts on soil physical properties: A review. Soil Science Society of America Journal, 84(5): 1527-1576.
  • Blake, G.R., Hartage, K.H., 1986. Bulk density. In: A. Klute (Ed.), Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, American Society of Agronomy, Inc. and Soil Science Society of America, 2nd Edition, Madison, Wisconsin, pp. 363-375.
  • Bronick, C.J., Lal, R., 2005. Soil structure and management: A review. Geoderma, 124(1): 3-22.
  • Cano, A., Núñez, A., Acosta-Martinez, V., Schipanski, M., Ghimire, R., Rice, C., West, C., 2018. Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region. Geoderma, 328: 109-118.
  • Dedeoğlu, M., Özayteki̇n, H.H., Başayiğit, L., 2020. Orta Anadolu Bölgesi aridisol topraklarının özellikleri ve arazi değerlendirmesi. Anadolu Tarım Bilimleri Dergisi, 35(3): 419-429.
  • Drewry, J.J., Cameron, K.C., Buchan, G.D., 2008. Pasture yield and soil physical property responses to soil compaction from treading and grazing-a review. Soil Research, 46(3): 237-256.
  • Drewry, J.J., Carrick, S., Penny, V., Houlbrooke, D.J., Laurenson, S., Mesman, N.L., 2021. Effects of irrigation on soil physical properties in predominantly pastoral farming systems: A review. New Zealand Journal of Agricultural Research, 64(4): 483-507.
  • Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: A. Klute (Ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Second Edition, Madison, WIS, USA, pp. 383-411.
  • Gümüş, İ., Negiş, H., Şeker, C., 2022. Effects of two different biochar on physical quality characteristics of a heavy clay soil. Arabian Journal of Geosciences, 15(9): 841.
  • Karlen, D.L., De, M., McDaniel, M.D., Stott, D.E., 2021. Evolution of the soil health movement. In: D.L. Karlen, D.E. Stott and M.M. Mikha (Eds.), Soil Health Series: Volume 1 Approaches to Soil Health Analysis, pp. 21-48.
  • Khasi, Z., Askari, M.S., Amanifar, S., Moravej, K., 2024. Assessing soil structural quality as an indicator of productivity under semi-arid climate. Soil and Tillage Research, 236: 105945.
  • Krausman, P.R., Heffelfinger, J.R., 2023. Challenges and opportunities for the future conservation of black-tailed and mule deer. In: J.R. Heffelfinger and P.R. Krausman (Eds.), Ecology and Management of Black-tailed and Mule Deer of North America, 1st Edition, CRC Press, pp. 397-404.
  • Lal, R., Shukla, M.K., 2004. Principles of Soil Physics. 1st Edition, CRC Press.
  • Lu, H., Chen, X., Ma, K., Zhou, S., Yi, J., Qi, Y., Hao, J., Chen, F., Wen, X., 2024. Soil health assessment under different soil and irrigation types in the agro-pastoral ecotone of northern China. Catena, 235: 107655.
  • Mattila, T.J., Hagelberg, E., Söderlund, S., Joona, J., 2022. How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans. Soil and Tillage Research, 215: 105204.
  • Mclean, E.O., 1983. Soil pH and lime requirement. In: A.L. Page (Ed.), Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Inc. and Soil Science Society of America, 2nd Edition, Madison, Wisconsin, pp. 199-224.
  • Navarro-Pedreño, J., Almendro-Candel, M.B., Zorpas, A.A., 2021. The increase of soil organic matter reduces global warming, myth or reality? Science, 3(1): 1-14.
  • Negiş, H., Gümüş, İ., Şeker, C., 2017. Effects of four different crops harvest processes on soils compaction. Journal of Tekirdag Agricultural Faculty, Special Issue: 25-29.
  • Nelson, D.W., Sommers, L.E., 1983. Total carbon, organic carbon, and organic matter. In: A.L. Page (Ed.), Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Inc. and Soil Science Society of America, Madison, Wisconsin, pp. 539-579.
  • Reeve, R.C., 1965. Modulus of rupture. In: C.A. Black (Ed.), Methods of Soil Analysis, Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, American Society of Agronomy, Inc. and Soil Science Society of America, Madison, Wisconsin, pp. 466-471.
  • Sapkota, S., Ghimire, R., Angadi, S.V., Singh, P., VanLeeuwen, D., Idowu, O.J., 2023. Soil health responses of circular grass buffer strips in center-pivot irrigated agriculture. Soil Science Society of America Journal, 87(2): 337-349.
  • Şeker, C., Özaytekin, H.H., Negiş, H., Gümüş, İ., Dedeoğlu, M., Atmaca, E., Karaca, Ü., 2017. Assessment of soil quality index for wheat and sugar beet cropping systems on an entisol in Central Anatolia. Environmental Monitoring and Assessment, 189(4): 1-11.
  • Simionesei, L., Ramos, T.B., Brito, D., Jauch, E., Leitão, P.C., Almeida, C., Neves, R., 2016. Numerical simulation of soil water dynamics under stationary sprinkler irrigation with Mohid‐Land. Irrigation and Drainage, 65(1): 98-111.
  • Tari, A.F., 2016. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agricultural Water Management, 167(6): 1-10.
  • Teffera, Z.L., Li, J., Astatkie, T., Gebru, Z.M., 2019. Effects of irrigation systems on physicochemical properties of soil at different depths: A case study at a farm near Ziway Lake, Ethiopia. Irrigation and Drainage, 68(2): 165-175.
  • Tim Chamen, W.C., Moxey, A.P., Towers, W., Balana, B., Hallett, P.D., 2015. Mitigating arable soil compaction: A review and analysis of available cost and benefit data. Soil and Tillage Research, 146(part A): 10-25.
  • Utomo, W.H., Dexter, A.R., 1982. Changes in soil aggregate water stability induced by wetting and drying cycles in non‐saturated soil. Journal of Soil Science, 33(4): 623-637.
  • Yang, L., Heng, T., Yang, G., Gu, X., Wang, J., He, X., 2021. Analysis of factors influencing effective utilization coefficient of irrigation water in the Manas River Basin. Water, 13(2): 189.

Farklı Sulama Sistemlerinin Zayıf Strüktürlü Toprağın Fiziksel Kalitesi Üzerine Etkisi

Yıl 2024, , 38 - 47, 03.04.2024
https://doi.org/10.19159/tutad.1385740

Öz

Aşırı arazi kullanımı nedeniyle toprakların yapısal olarak bozulması, son yıllarda tarımsal sürdürülebilirliği olumsuz yönde etkilemiştir. Bu araştırmada kabuklanma sorununun görüldüğü bir bölgede beş yıl boyunca uygulanan farklı sulama yöntemlerinin toprağın fiziksel kalitesine etkisi araştırılmıştır. Buğday yetiştirilen ve 4 farklı sulama sistemine [Doğal yağış (DY), linear pivot sulama (LPS), yeraltı damlama sulama (YDS) ve yağmurlama sulama (YS)] sahip bir bölgeden 0-20 cm derinlikten bozulmuş ve bozulmamış toprak örnekleri alınmıştır. Çalışmada, toprağın ortalama ağırlık çapı (OAÇ), suya dayanıklı agregatlar, doygunluk düzeyi (Θs), tarla kapasitesi (TK), solma noktası, yarayışlı su içeriği (YSİ), havalanma kapasitesi, kırılma indeksi, plastik limit (PL), likit limit (LL) ve plastiklik indeksi (Pİ) belirlenmiştir. Suya dayanıklı agregatlar, DY sisteminde en düşük % 7.76 olurken; bu sonuç, % 150.64 artarak YDS sisteminde % 19.45'e çıkmıştır. Toprakların OAÇ değerleri DY sisteminde 0.178 mm bulunmuş olup, bu değer YDS sisteminde artarak 0.467 mm olarak bulunmuştur. Yeraltı damlama sulama sisteminde; Θs, TK ve YSİ bakımından en yüksek değerler elde edilmiştir. Kırılma indeksi DY sisteminde 151.56 kPA olarak bulunurken; LPS, YDS ve YS alanlarında sırasıyla 154.4, 44.78 ve 154.2 kPA olarak bulunmuştur. Farklı sulama sistemleri toprakların PL, LL ve Pİ değerlerinde herhangi bir değişime neden olmamış; bu değerler sırasıyla ortalama, % 44.57, 21.14 ve 23.44 olarak belirlenmiştir. Bu doğrultuda toprak agregat stabilitesi ve su karakteristik özellikleri sonuçlarının uzun yıllar takip edilmesi ve farklı toprak türlerinde incelenmesi gerekliliği ortaya çıkmıştır. Ayrıca arazilerin sürdürülebilir kullanımı için sulama sistemlerinin olası etkilerinin dikkate alınması gerektiği önerilmiştir.

Kaynakça

  • Anonymous, 2010. Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. American Society for the Testing and Materials, ASTM Book of Standards Soil and Rock (I): D420-D5876.
  • Abdullateef, Z.A., El- Ghamry, A.M., Jasim, A.A., EL-Hadidi, E.M., Ghazi, D.A., 2022. Effect of different irrigation systems on some physical properties of soil, growth and yield of cotton crop. Journal of Soil Sciences and Agricultural Engineering, 13(12): 393-396.
  • Alvarez, R., Steinbach, H.S., 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research, 104(1): 1-15.
  • Amezketa, E., Aragüés, R., Carranza, R., Urgel, B., 2003. Macro-and micro-aggregate stability of soils determined by a combination of wet-sieving and laser-ray diffraction. Spanish Journal of Agricultural Research, 1(4): 83-94.
  • Aon, M., Aslam, Z., Hussain, S., Bashir, M.A., Shaaban, M., Masood, S., Iqbal, S., Khalid, M., Rehim, A., Mosa, W.F.A., Sas-Paszt, L., Marey, S.A., Hatamleh, A.A., 2023. Wheat straw biochar produced at a low temperature enhanced maize growth and yield by influencing soil properties of typic calciargid. Sustainability, 15(12): 9488.
  • Barzegar, A.R., Yousefi, A., Daryashenas, A., 2002. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant and Soil, 247(2): 295-301.
  • Blanco-Canqui, H., Klocke, N., Schlegel, A., Stone, L., Rice, C., 2010. Impacts of deficit irrigation on carbon sequestration and soil physical properties under no‐till. Soil Science Society of America Journal, 74(4): 1301-1309.
  • Blanco-Canqui, H., Ruis, S.J., 2020. Cover crop impacts on soil physical properties: A review. Soil Science Society of America Journal, 84(5): 1527-1576.
  • Blake, G.R., Hartage, K.H., 1986. Bulk density. In: A. Klute (Ed.), Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, American Society of Agronomy, Inc. and Soil Science Society of America, 2nd Edition, Madison, Wisconsin, pp. 363-375.
  • Bronick, C.J., Lal, R., 2005. Soil structure and management: A review. Geoderma, 124(1): 3-22.
  • Cano, A., Núñez, A., Acosta-Martinez, V., Schipanski, M., Ghimire, R., Rice, C., West, C., 2018. Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region. Geoderma, 328: 109-118.
  • Dedeoğlu, M., Özayteki̇n, H.H., Başayiğit, L., 2020. Orta Anadolu Bölgesi aridisol topraklarının özellikleri ve arazi değerlendirmesi. Anadolu Tarım Bilimleri Dergisi, 35(3): 419-429.
  • Drewry, J.J., Cameron, K.C., Buchan, G.D., 2008. Pasture yield and soil physical property responses to soil compaction from treading and grazing-a review. Soil Research, 46(3): 237-256.
  • Drewry, J.J., Carrick, S., Penny, V., Houlbrooke, D.J., Laurenson, S., Mesman, N.L., 2021. Effects of irrigation on soil physical properties in predominantly pastoral farming systems: A review. New Zealand Journal of Agricultural Research, 64(4): 483-507.
  • Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: A. Klute (Ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Second Edition, Madison, WIS, USA, pp. 383-411.
  • Gümüş, İ., Negiş, H., Şeker, C., 2022. Effects of two different biochar on physical quality characteristics of a heavy clay soil. Arabian Journal of Geosciences, 15(9): 841.
  • Karlen, D.L., De, M., McDaniel, M.D., Stott, D.E., 2021. Evolution of the soil health movement. In: D.L. Karlen, D.E. Stott and M.M. Mikha (Eds.), Soil Health Series: Volume 1 Approaches to Soil Health Analysis, pp. 21-48.
  • Khasi, Z., Askari, M.S., Amanifar, S., Moravej, K., 2024. Assessing soil structural quality as an indicator of productivity under semi-arid climate. Soil and Tillage Research, 236: 105945.
  • Krausman, P.R., Heffelfinger, J.R., 2023. Challenges and opportunities for the future conservation of black-tailed and mule deer. In: J.R. Heffelfinger and P.R. Krausman (Eds.), Ecology and Management of Black-tailed and Mule Deer of North America, 1st Edition, CRC Press, pp. 397-404.
  • Lal, R., Shukla, M.K., 2004. Principles of Soil Physics. 1st Edition, CRC Press.
  • Lu, H., Chen, X., Ma, K., Zhou, S., Yi, J., Qi, Y., Hao, J., Chen, F., Wen, X., 2024. Soil health assessment under different soil and irrigation types in the agro-pastoral ecotone of northern China. Catena, 235: 107655.
  • Mattila, T.J., Hagelberg, E., Söderlund, S., Joona, J., 2022. How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans. Soil and Tillage Research, 215: 105204.
  • Mclean, E.O., 1983. Soil pH and lime requirement. In: A.L. Page (Ed.), Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Inc. and Soil Science Society of America, 2nd Edition, Madison, Wisconsin, pp. 199-224.
  • Navarro-Pedreño, J., Almendro-Candel, M.B., Zorpas, A.A., 2021. The increase of soil organic matter reduces global warming, myth or reality? Science, 3(1): 1-14.
  • Negiş, H., Gümüş, İ., Şeker, C., 2017. Effects of four different crops harvest processes on soils compaction. Journal of Tekirdag Agricultural Faculty, Special Issue: 25-29.
  • Nelson, D.W., Sommers, L.E., 1983. Total carbon, organic carbon, and organic matter. In: A.L. Page (Ed.), Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Inc. and Soil Science Society of America, Madison, Wisconsin, pp. 539-579.
  • Reeve, R.C., 1965. Modulus of rupture. In: C.A. Black (Ed.), Methods of Soil Analysis, Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, American Society of Agronomy, Inc. and Soil Science Society of America, Madison, Wisconsin, pp. 466-471.
  • Sapkota, S., Ghimire, R., Angadi, S.V., Singh, P., VanLeeuwen, D., Idowu, O.J., 2023. Soil health responses of circular grass buffer strips in center-pivot irrigated agriculture. Soil Science Society of America Journal, 87(2): 337-349.
  • Şeker, C., Özaytekin, H.H., Negiş, H., Gümüş, İ., Dedeoğlu, M., Atmaca, E., Karaca, Ü., 2017. Assessment of soil quality index for wheat and sugar beet cropping systems on an entisol in Central Anatolia. Environmental Monitoring and Assessment, 189(4): 1-11.
  • Simionesei, L., Ramos, T.B., Brito, D., Jauch, E., Leitão, P.C., Almeida, C., Neves, R., 2016. Numerical simulation of soil water dynamics under stationary sprinkler irrigation with Mohid‐Land. Irrigation and Drainage, 65(1): 98-111.
  • Tari, A.F., 2016. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agricultural Water Management, 167(6): 1-10.
  • Teffera, Z.L., Li, J., Astatkie, T., Gebru, Z.M., 2019. Effects of irrigation systems on physicochemical properties of soil at different depths: A case study at a farm near Ziway Lake, Ethiopia. Irrigation and Drainage, 68(2): 165-175.
  • Tim Chamen, W.C., Moxey, A.P., Towers, W., Balana, B., Hallett, P.D., 2015. Mitigating arable soil compaction: A review and analysis of available cost and benefit data. Soil and Tillage Research, 146(part A): 10-25.
  • Utomo, W.H., Dexter, A.R., 1982. Changes in soil aggregate water stability induced by wetting and drying cycles in non‐saturated soil. Journal of Soil Science, 33(4): 623-637.
  • Yang, L., Heng, T., Yang, G., Gu, X., Wang, J., He, X., 2021. Analysis of factors influencing effective utilization coefficient of irrigation water in the Manas River Basin. Water, 13(2): 189.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toprak Fiziği
Bölüm Araştırma Makalesi / Research Article
Yazarlar

Hamza Negiş 0000-0002-1880-9188

Cevdet Şeker 0000-0002-8760-6990

Raziye Koçkesen 0000-0002-4390-9762

Yayımlanma Tarihi 3 Nisan 2024
Gönderilme Tarihi 3 Kasım 2023
Kabul Tarihi 21 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Negiş, H., Şeker, C., & Koçkesen, R. (2024). Farklı Sulama Sistemlerinin Zayıf Strüktürlü Toprağın Fiziksel Kalitesi Üzerine Etkisi. Türkiye Tarımsal Araştırmalar Dergisi, 11(1), 38-47. https://doi.org/10.19159/tutad.1385740
AMA Negiş H, Şeker C, Koçkesen R. Farklı Sulama Sistemlerinin Zayıf Strüktürlü Toprağın Fiziksel Kalitesi Üzerine Etkisi. TÜTAD. Nisan 2024;11(1):38-47. doi:10.19159/tutad.1385740
Chicago Negiş, Hamza, Cevdet Şeker, ve Raziye Koçkesen. “Farklı Sulama Sistemlerinin Zayıf Strüktürlü Toprağın Fiziksel Kalitesi Üzerine Etkisi”. Türkiye Tarımsal Araştırmalar Dergisi 11, sy. 1 (Nisan 2024): 38-47. https://doi.org/10.19159/tutad.1385740.
EndNote Negiş H, Şeker C, Koçkesen R (01 Nisan 2024) Farklı Sulama Sistemlerinin Zayıf Strüktürlü Toprağın Fiziksel Kalitesi Üzerine Etkisi. Türkiye Tarımsal Araştırmalar Dergisi 11 1 38–47.
IEEE H. Negiş, C. Şeker, ve R. Koçkesen, “Farklı Sulama Sistemlerinin Zayıf Strüktürlü Toprağın Fiziksel Kalitesi Üzerine Etkisi”, TÜTAD, c. 11, sy. 1, ss. 38–47, 2024, doi: 10.19159/tutad.1385740.
ISNAD Negiş, Hamza vd. “Farklı Sulama Sistemlerinin Zayıf Strüktürlü Toprağın Fiziksel Kalitesi Üzerine Etkisi”. Türkiye Tarımsal Araştırmalar Dergisi 11/1 (Nisan 2024), 38-47. https://doi.org/10.19159/tutad.1385740.
JAMA Negiş H, Şeker C, Koçkesen R. Farklı Sulama Sistemlerinin Zayıf Strüktürlü Toprağın Fiziksel Kalitesi Üzerine Etkisi. TÜTAD. 2024;11:38–47.
MLA Negiş, Hamza vd. “Farklı Sulama Sistemlerinin Zayıf Strüktürlü Toprağın Fiziksel Kalitesi Üzerine Etkisi”. Türkiye Tarımsal Araştırmalar Dergisi, c. 11, sy. 1, 2024, ss. 38-47, doi:10.19159/tutad.1385740.
Vancouver Negiş H, Şeker C, Koçkesen R. Farklı Sulama Sistemlerinin Zayıf Strüktürlü Toprağın Fiziksel Kalitesi Üzerine Etkisi. TÜTAD. 2024;11(1):38-47.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667