Araştırma Makalesi
BibTex RIS Kaynak Göster

Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi

Yıl 2019, , 165 - 173, 30.06.2019
https://doi.org/10.19159/tutad.493006

Öz



Bu çalışmanın amacı, fıstık (Pistacia vera L.) bitki ekstraktı kullanılarak, yeşil sentez yöntemi ile gümüş nanopartikül (AgNP)’lerini
sentezlemektir. Yeşil sentez; çevre dostu ve maliyet açısından ucuz olması, kimyasal ve fiziksel yöntemlerden daha çok tercih edilen nanopartiküllerin
kolay bir şekilde elde edilmesi ile bilinen biyolojik bir yöntemdir. Reaksiyon sonucunda elde edilen AgNP’ler, UV görünür spektrofotometre (UV-vis),
fourier-dönüştürülmüş kızılötesi spektroskopisi (FTIR), X-Işını kırınımı (XRD), termogravimetrik ve diferansiyel termal analizi (TGA-DTA), taramalı elektron
mikroskobu ve enerji yayılımlı X-ışını cihazı (SEM-EDX) kullanılarak karakterize edilmiştir. Gümüş nanopartiküllerin 460.67 nm’de maksimum absorbansa sahip
olduğu görülmüştür. AgNP’lerin indirgenmesinde rol olan fitokimyasalları analiz etmek için FTIR analizi yapılmıştır. Debye-Scherrer’s denkleminden yararlanarak
sentezlenen nanoparçacıkların kristal boyutunun 16.7 nm olduğu hesaplanmıştır. AgNP’lerin küresel görünümde olduğu transmisyon elektron mikroskobu ile tespit
edilmiştir. Sentezlenen AgNP’lerin antimikrobiyal etkisi gram pozitif ve gram negatif bakterileri ve fungus (maya) üzerinde minimum inhibitör konsantrasyonu
(MIC) metodu ile test edilmiştir. Sonuç olarak, sentezlenen gümüş nanopartiküllerin antimikrobiyal etki gösterdiği belirlenmiştir.





Kaynakça

  • Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advanced Research, 7(1): 17-28.
  • Alsammarraie, F.K., Wang, W., Zhou, P., Mustapha, A., Lin, M., 2018. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 171: 398-405.
  • Ambika, S., Sundrarajan, M., 2015. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. Journal of Photochemistry and Photobiology B: Biology, 146: 52-57.
  • Babu, S.A., Prabu, H.G., 2011. Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature. Materials Letters, 65(11): 1675-1677.
  • Banala, R.R., Nagati, V.B., Karnati, P.R., 2015. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi Journal of Biological Sciences, 22(5): 637-644.
  • Baran, M.F., 2017. Sularda bazı ağır metallerin biyosorbsiyonu, Doktora Tezi, Dicle Üniversitesi, Fen Bilimleri Enstitüsü, Diyarbakır.
  • Bryaskova, R., Pencheva, D., Nikolov, S., Kantardjiev, T., 2011. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). Journal of Chemical Biology, 4(4): 185-191.
  • Chen, J.C., Lin, Z.H., Ma, X.X., 2003. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Letters in Applied Microbiology, 37(2): 105-108.
  • Dadashpour, M., Firouzi-Amandi, A., Pourhassan-Moghaddam, M., Maleki, M.J., Soozangar, N., Jeddi, F., Nouri, M., Zarghami, N., Pilehvar-Soltanahmadi, Y., 2018. Biomimetic synthesis of silver nanoparticles using Matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Materials Science and Engineering: C, 92: 902-912.
  • Dehvari, M., Ghahghaei, A., 2018. The effect of green synthesis silver nanoparticles (AgNPs) from Pulicaria undulata on the amyloid formation in α-lactalbumin and the chaperon action of α-casein. International Journal of Biological Macromolecules, 108: 1128-1139.
  • Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., Banat, I.M., 2016. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38(6): 1015-1019.
  • Eren, A., Baran, M.F., 2019. Green synthesis, characterization and antimicrobial activity of silver nanoparticles (AgNPs) from maize (Zea mays). Applied Ecology and Environmental Research, 17(2): 4097-4105.
  • Francis, S., Joseph, S., Koshy, E.P., Mathew, B., 2017. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environmental Science and Pollution Research, 24(21): 17347-17357.
  • Gopinath, K., Kumaraguru, S., Bhakyaraj, K., Mohan, S., Venkatesh, K. S., Esakkirajan, M., Kaleeswarran, P.R., Naiyf, S.A., Kadaikunnan, S., Govindarajan, M., Benelli, G.,
  • Arumugam, A., 2016. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis, 101: 1-11.
  • Gupta, S., Kumar, V., Joshi, K.B., 2017. Solvent mediated photo-induced morphological transformation of AgNPs-peptide hybrids in water-EtOH binary solvent mixture. Journal of Molecular Liquids, 236: 266-277.
  • Khan, Z.U.H., Khan, A., Chen, Y.M., Shah, N.S., Khan, A.U., Muhammad, N., Tahir, K., Shah, H.U., Khan, Z.U., Shakeel, M., Nadeem, M., Imran, M., Wan, P., 2018. Enhanced antimicrobial, anti-oxidant applications of green synthesized AgNPs-an acute chronic toxicity study of phenolic azo dyes & study of materials surface using X-ray photoelectron spectroscopy. Journal of Photochemistry and Photobiology B: Biology, 180: 208-217.
  • Kim, S.W., Jung, J.H., Lamsal, K., Kim, Y.S., Min, J.S., Lee, Y.S., 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40(1): 53-58.
  • Kumar, B., Smita, K., Cumbal, L., Debut, A. 2017. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi Journal of Biological Sciences, 24(1): 45-50.
  • Kung, J.C., Chen, Y.J., Chiang, Y.C., Lee, C.L., Yang-Wang, Y.T., Hung, C.C., Shih, C.J., 2018. Antibacterial activity of silver nanoparticle (AgNP) confined mesoporous structured bioactive powder against Enterococcus faecalis infecting root canal systems. Journal of Non-Crystalline Solids, 502(15): 62-70.
  • Lakshman Kumar, D., Siva Sankar, S., Venkatesh, P., Hepcy Kalarani, D., 2016. Green synthesis of silver nanoparticles using aerial parts extract of Echinochloa colona and their characterization. European Journal of Pharmaceutical Medical Research, 3(4): 325-328.
  • Pallela, P.N.V.K., Ummey, S., Ruddaraju, L.K., Pammi, S.V.N., Yoon, S.G., 2018. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 124: 63-69.
  • Rajan, R., Chandran, K., Harper, S.L., Yun, S.I., Kalaichelvan, P.T., 2015. Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Industrial Crops and Products, 70: 356-373.
  • Saravanakumar, K., Chelliah, R., Shanmugam, S., Varukattu, N.B., Oh, D.H., Kathiresan, K., Wang, M.H., 2018. Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. Journal of Photochemistry and Photobiology B: Biology, 185: 126-135.
  • Selvakumar, P., Sithara, R., Viveka, K., Sivashanmugam, P., 2018. Green synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in blood compatibility. Journal of Photochemistry and Photobiology B: Biology, 182: 52-61.
  • Selvam, K., Sudhakar, C., Govarthanan, M., Thiyagarajan, P., Sengottaiyan, A., Senthilkumar, B., Selvankumar, T., 2017. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. Journal of Radiation Research and Applied Sciences, 10(1): 6-12.
  • Singh, V., Shrivastava, A., Wahi, N., 2015. Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX. African Journal of Biotechnology, 14(33): 2554-2567.
  • Song, J.Y., Kim, B.S., 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(1): 79-84.
  • Stevanović, M.M., Škapin, S.D., Bračko, I., Milenković, M., Petković, J., Filipič, M., Uskoković, D.P., 2012. Poly (lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer, 53(14): 2818-2828.
  • Wang, M., Zhang, W., Zheng, X., Zhu, P., 2017. Antibacterial and catalytic activities of biosynthesized silver nanoparticles prepared by using an aqueous extract of green coffee bean as a reducing agent. RSC Advances, 7(20): 12144-12149.
  • Xu, H., Shi, X., Ma, H., Lv, Y., Zhang, L., Mao, Z., 2011. The preparation and antibacterial effects of dopa-cotton/AgNPs. Applied Surface Science, 257(15): 6799-6803.
  • Yang, G., Xie, J., Deng, Y., Bian, Y., Hong, F., 2012. Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydrate Polymers, 87(4): 2482-2487.

Synthesis, Characterization and Investigation of Antimicrobial Activity of Silver Nanoparticles (AgNP) from Pistachio (Pistacia vera L.) Leaf

Yıl 2019, , 165 - 173, 30.06.2019
https://doi.org/10.19159/tutad.493006

Öz

The aim of this study is to synthesize silver nanoparticles (AgNPs) by green synthesis methods using pistachio (Pistacia vera L.) plant extract. Green synthesis is a biological method in which nanoparticles are easily obtained; as well as being environmentally friendly and inexpensive in terms of cost, and being more preferred than chemical and physical methods. AgNPs obtained by the reaction were chacarterized with UV visible spectrophotometer (UV-vis), fouriertransformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TGA-DTA), scanning electron microscopy and energy dispersive X-ray device (SEM-EDX). Silver nanoparticles were found to have a maximum absorbance at 460.67 nm. FTIR analysis was performed to analyze the phytochemicals involved in the reduction of AgNPs. Using the Debye-Scherrer's equation, the crystal size of the synthesized nanoparticles was calculated as 16.7 nm. AgNPs spherical appearance were detected by transmission electron microscopy. The antimicrobial effect of synthesized AgNPs were tested on gram-positive and gram-negative bacteria, and by the minimum inhibitory concentration (MIC) method on fungi (yeast). As a result, it was determined that the synthesized silver nanoparticles had antimicrobial effect.

Kaynakça

  • Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advanced Research, 7(1): 17-28.
  • Alsammarraie, F.K., Wang, W., Zhou, P., Mustapha, A., Lin, M., 2018. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 171: 398-405.
  • Ambika, S., Sundrarajan, M., 2015. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. Journal of Photochemistry and Photobiology B: Biology, 146: 52-57.
  • Babu, S.A., Prabu, H.G., 2011. Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature. Materials Letters, 65(11): 1675-1677.
  • Banala, R.R., Nagati, V.B., Karnati, P.R., 2015. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi Journal of Biological Sciences, 22(5): 637-644.
  • Baran, M.F., 2017. Sularda bazı ağır metallerin biyosorbsiyonu, Doktora Tezi, Dicle Üniversitesi, Fen Bilimleri Enstitüsü, Diyarbakır.
  • Bryaskova, R., Pencheva, D., Nikolov, S., Kantardjiev, T., 2011. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). Journal of Chemical Biology, 4(4): 185-191.
  • Chen, J.C., Lin, Z.H., Ma, X.X., 2003. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Letters in Applied Microbiology, 37(2): 105-108.
  • Dadashpour, M., Firouzi-Amandi, A., Pourhassan-Moghaddam, M., Maleki, M.J., Soozangar, N., Jeddi, F., Nouri, M., Zarghami, N., Pilehvar-Soltanahmadi, Y., 2018. Biomimetic synthesis of silver nanoparticles using Matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Materials Science and Engineering: C, 92: 902-912.
  • Dehvari, M., Ghahghaei, A., 2018. The effect of green synthesis silver nanoparticles (AgNPs) from Pulicaria undulata on the amyloid formation in α-lactalbumin and the chaperon action of α-casein. International Journal of Biological Macromolecules, 108: 1128-1139.
  • Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., Banat, I.M., 2016. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38(6): 1015-1019.
  • Eren, A., Baran, M.F., 2019. Green synthesis, characterization and antimicrobial activity of silver nanoparticles (AgNPs) from maize (Zea mays). Applied Ecology and Environmental Research, 17(2): 4097-4105.
  • Francis, S., Joseph, S., Koshy, E.P., Mathew, B., 2017. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environmental Science and Pollution Research, 24(21): 17347-17357.
  • Gopinath, K., Kumaraguru, S., Bhakyaraj, K., Mohan, S., Venkatesh, K. S., Esakkirajan, M., Kaleeswarran, P.R., Naiyf, S.A., Kadaikunnan, S., Govindarajan, M., Benelli, G.,
  • Arumugam, A., 2016. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis, 101: 1-11.
  • Gupta, S., Kumar, V., Joshi, K.B., 2017. Solvent mediated photo-induced morphological transformation of AgNPs-peptide hybrids in water-EtOH binary solvent mixture. Journal of Molecular Liquids, 236: 266-277.
  • Khan, Z.U.H., Khan, A., Chen, Y.M., Shah, N.S., Khan, A.U., Muhammad, N., Tahir, K., Shah, H.U., Khan, Z.U., Shakeel, M., Nadeem, M., Imran, M., Wan, P., 2018. Enhanced antimicrobial, anti-oxidant applications of green synthesized AgNPs-an acute chronic toxicity study of phenolic azo dyes & study of materials surface using X-ray photoelectron spectroscopy. Journal of Photochemistry and Photobiology B: Biology, 180: 208-217.
  • Kim, S.W., Jung, J.H., Lamsal, K., Kim, Y.S., Min, J.S., Lee, Y.S., 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40(1): 53-58.
  • Kumar, B., Smita, K., Cumbal, L., Debut, A. 2017. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi Journal of Biological Sciences, 24(1): 45-50.
  • Kung, J.C., Chen, Y.J., Chiang, Y.C., Lee, C.L., Yang-Wang, Y.T., Hung, C.C., Shih, C.J., 2018. Antibacterial activity of silver nanoparticle (AgNP) confined mesoporous structured bioactive powder against Enterococcus faecalis infecting root canal systems. Journal of Non-Crystalline Solids, 502(15): 62-70.
  • Lakshman Kumar, D., Siva Sankar, S., Venkatesh, P., Hepcy Kalarani, D., 2016. Green synthesis of silver nanoparticles using aerial parts extract of Echinochloa colona and their characterization. European Journal of Pharmaceutical Medical Research, 3(4): 325-328.
  • Pallela, P.N.V.K., Ummey, S., Ruddaraju, L.K., Pammi, S.V.N., Yoon, S.G., 2018. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 124: 63-69.
  • Rajan, R., Chandran, K., Harper, S.L., Yun, S.I., Kalaichelvan, P.T., 2015. Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Industrial Crops and Products, 70: 356-373.
  • Saravanakumar, K., Chelliah, R., Shanmugam, S., Varukattu, N.B., Oh, D.H., Kathiresan, K., Wang, M.H., 2018. Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. Journal of Photochemistry and Photobiology B: Biology, 185: 126-135.
  • Selvakumar, P., Sithara, R., Viveka, K., Sivashanmugam, P., 2018. Green synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in blood compatibility. Journal of Photochemistry and Photobiology B: Biology, 182: 52-61.
  • Selvam, K., Sudhakar, C., Govarthanan, M., Thiyagarajan, P., Sengottaiyan, A., Senthilkumar, B., Selvankumar, T., 2017. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. Journal of Radiation Research and Applied Sciences, 10(1): 6-12.
  • Singh, V., Shrivastava, A., Wahi, N., 2015. Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX. African Journal of Biotechnology, 14(33): 2554-2567.
  • Song, J.Y., Kim, B.S., 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(1): 79-84.
  • Stevanović, M.M., Škapin, S.D., Bračko, I., Milenković, M., Petković, J., Filipič, M., Uskoković, D.P., 2012. Poly (lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer, 53(14): 2818-2828.
  • Wang, M., Zhang, W., Zheng, X., Zhu, P., 2017. Antibacterial and catalytic activities of biosynthesized silver nanoparticles prepared by using an aqueous extract of green coffee bean as a reducing agent. RSC Advances, 7(20): 12144-12149.
  • Xu, H., Shi, X., Ma, H., Lv, Y., Zhang, L., Mao, Z., 2011. The preparation and antibacterial effects of dopa-cotton/AgNPs. Applied Surface Science, 257(15): 6799-6803.
  • Yang, G., Xie, J., Deng, Y., Bian, Y., Hong, F., 2012. Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydrate Polymers, 87(4): 2482-2487.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi / Research Article
Yazarlar

Abdullah Eren 0000-0003-1187-7978

Mehmet Fırat Baran Bu kişi benim 0000-0001-8133-6670

Yayımlanma Tarihi 30 Haziran 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Eren, A., & Baran, M. F. (2019). Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 6(2), 165-173. https://doi.org/10.19159/tutad.493006
AMA Eren A, Baran MF. Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi. TÜTAD. Haziran 2019;6(2):165-173. doi:10.19159/tutad.493006
Chicago Eren, Abdullah, ve Mehmet Fırat Baran. “Fıstık (Pistacia Vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu Ve Antimikrobiyal Aktivitesinin İncelenmesi”. Türkiye Tarımsal Araştırmalar Dergisi 6, sy. 2 (Haziran 2019): 165-73. https://doi.org/10.19159/tutad.493006.
EndNote Eren A, Baran MF (01 Haziran 2019) Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi. Türkiye Tarımsal Araştırmalar Dergisi 6 2 165–173.
IEEE A. Eren ve M. F. Baran, “Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi”, TÜTAD, c. 6, sy. 2, ss. 165–173, 2019, doi: 10.19159/tutad.493006.
ISNAD Eren, Abdullah - Baran, Mehmet Fırat. “Fıstık (Pistacia Vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu Ve Antimikrobiyal Aktivitesinin İncelenmesi”. Türkiye Tarımsal Araştırmalar Dergisi 6/2 (Haziran 2019), 165-173. https://doi.org/10.19159/tutad.493006.
JAMA Eren A, Baran MF. Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi. TÜTAD. 2019;6:165–173.
MLA Eren, Abdullah ve Mehmet Fırat Baran. “Fıstık (Pistacia Vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu Ve Antimikrobiyal Aktivitesinin İncelenmesi”. Türkiye Tarımsal Araştırmalar Dergisi, c. 6, sy. 2, 2019, ss. 165-73, doi:10.19159/tutad.493006.
Vancouver Eren A, Baran MF. Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi. TÜTAD. 2019;6(2):165-73.

Cited By








TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667