Derleme
BibTex RIS Kaynak Göster

Azot ve Kükürt Beslenmesinin Buğday Tanesine Çinko ve Demir Taşınmasındaki Rolü

Yıl 2017, Cilt: 4 Sayı: 1, 96 - 102, 28.02.2017
https://doi.org/10.19159/tutad.300725

Öz

Son yıllarda yapılan araştırma sonuçları, tahıl tanelerinin mineral element (çinko ve demir) konsantrasyonları bakımından fakir olduğunu ortaya koymuştur. Bu nedenle tahılların beslenme kalitesinin arttırılması gerekmektedir. Buğdayda tane verimi ve protein konsantrasyonuna, azot ve kükürt beslenmesinin önemli etki yaptığı bilinmektedir. Bazı fiziksel ve moleküler mekanizmalardan dolayı bitkilerin azot beslenme statüleri çinko ve demir alımlarını ve birikimini etkileyen en önemli kompenent olduğu gösterilmektedir. Buğdayın kükürt ihtiyacı azota göre azdır. Ancak, kükürt eksikliğinde protein olmayan azotlu bileşikler (asparagine, glutamine) birikmekte, kükürt içeren amino asitlerin (sistein, methionine) sentezi ve tanedeki birikimleri azalmaktadır. Buğday tanesinin çinko (ve demir) içeriğinin arttırılması çabaları; çinkonun kök bölgesinden absorbsiyonu, kökten bitki dokularına taşınması, floemde taşınımı, çinkonun bitkinin vejetatif dokusundan gelişmekte olan tohuma taşınması ve tohumda çinkonun depolanması gibi, süreçlerdeki bilgi eksikliğinden dolayı engellenmektedir. Literatürde artan kanıtlar, yukarıda sayılan faktörlerin azotlu gübreleme veya bitkinin azot metabolizması tarafından etkilendiğini işaret etmektedir. Son yıllarda yapılan araştırmalarda, tanenin çinko ve demir konsantrasyonunun, azot uygulamasıyla arttırılabileceği ve çinko ve azot uygulamalarının makarnalık buğdayın tane çinko konsantrasyonunun arttırılmasında sinerjik etki yaptığı belirtilmiştir. Çinkonun floem yoluyla taneye taşınabilmesi için, kükürt içeren amino asitlerle ligand oluşturması gerektiği belirtilmiştir. Bu çalışmada, buğday tanesinde çinko ve demir birikiminde, azot ve kükürt beslenmesinin önemi vurgulanmıştır.

Kaynakça

  • Alam, S., Kamei, S., Kawai, S., 2005. Effectiveness of phytosiderophore in absorption and translocation of 59Iron in barley in the presence of plant-borne, synthetic, and microbial chelators. Journal of plant nutrition, 28(10): 1709-1722.
  • Alloway, B.J., 2004. Zinc in Soils and Crop Nutrition. IZA Publications. International Zinc Association, Brussels, pp. 1-116.
  • Barneix, A.J., 2007. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. Journal of plant physiology, 164(5): 581-590.
  • Barut, H., 2012. Farklı doz ve zamanlarda uygulanan çinko ve azotun buğdayda tane çinko konsantrasyonu üzerine etkisi. Doktora tezi, Çukurova Üniversitesi Ziraat Fakültesi, Toprak Bilimi ve Bitki Besleme Bölümü, Adana.
  • Black, R.E., Lindsay, H.A., Bhutta, Z.A., Caulfield, L.E., De Onnis, M., Ezzati, M., Mathers, C., Rivera, J., 2008. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet, 371(9608): 243-260.
  • Çakmak, İ., 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302(1-2): 1-17.
  • Çakmak, İ., Kalaycı, M., Ekiz, H., Braun, H.J., Yılmaz, A., 1999. Zinc deficiency as an actual problem in plant and human nutrition in Turkey: A NATO-Science for Stability Project. Field Crops Research, 60(1): 175-188.
  • Çakmak, İ., Pfeiffer, W.H., Mcclafferty, B., 2010. Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 87(1): 10-20.
  • Çakmak, İ., Torun, B., Erenoğlu, B., Öztürk, L., Marschner, H., Kalaycı, M., Ekiz, H., Yılmaz, A., 1997. Morphological and physiological differences in the response of cereals to zinc deficiency. In: Wheat Prospects for Global Improvement, Springer Netherlands, pp. 427-435.
  • Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Jean, M.L., Misson, J., Schikora, A., Czernic, P., Mari, S., 2009. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 103(1): 1-11.
  • Deckard, E.L., Joppa, L.R., Hammond, J.J., Hareland, G.A., 1996. Grain protein determinants of the Langdon durum- diccoides chromosome substitution lines. Crop Science, 36(6): 1513-1516.
  • Distelfeld, A., Çakmak, İ., Peleg, Z., Öztürk, L., Yazıcı, A.M., Budak, H., Fahima, T., 2007. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiologia Plantarum, 129(3): 635-643.
  • Dudev, T., Lim, C., 2003. Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chemical Reviews, 103(3): 773-788.
  • Ekiz, H., Yılmaz, A., Gültekin, I., Bağcı, S.A., Torun, B., Çakmak, İ., 1998. Konya yöresinde çinko noksanlığı üzerine yürütülen araştırmalar ve sağlanan gelişmeler. I. Ulusal Çinko Kongresi, 12-16 Mayıs, Eskişehir, s. 115-121.
  • Erdal, I., Yılmaz, A., Taban, S., Eker, S., Çakmak, İ., 2002. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. Journal of Plant Nutrition, 25(1): 113-127.
  • Erenoğlu, E.B., Kutman, U.B., Ceylan, Y., Yıldız, B., Çakmak, İ., 2011. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist, 189(2): 438-448.
  • Feller, U., Fischer, A., 1994. Nitrogen metabolism in senescing leaves.Critical Reviews in Plant Sciences, 13(3): 241-273.
  • Graham, R.D., Ascher, J.S., Hynes, S.C., 1992. Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant and Soil, 146(1-2): 241-250.
  • Granvogl, M., Wieser, H., Koehler, P., Von Tucher, S., Schieberle, P., 2007. Influence of sulfur fertilization on the amounts of free amino acids in wheat. Correlation with baking properties as well as with 3-aminopropionamide and acrylamide generation during baking. Journal of Agricultural and Food Chemistry, 55(10): 4271-4277.
  • Hacısalihoğlu, G., Kochian, L.V., 2003. How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytologıst, 159(2): 341-350.
  • Haydon, M.J., Cobbett, C.S., 2007. Transporters of ligands for essential metal ions in plants. New Phytologist, 174(3): 499-506.
  • Kade, M., Barneix, A.J., Olmos, S., Dubcovsky, J., 2005. Nitrojen uptake and remobilization in tetraploid ‘Langdon’ durum wheat and a recombinant substitution line with the high grain protein gene Gpc- B1. Plant Breeding, 124(4): 343-349.
  • Kichey, T., Hirel, B., Heumez, E., Dubois, F., Le Gouis, J., 2007. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Research, 102(1): 22-32.
  • Kruger, C., Berkowitz, O., Stephan, U.W., Hell, R., 2002. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. Journal of Biological Chemistry, 277(28): 25062-25069.
  • Kutman, U.B., 2010. Roles of nitrogen and zinc nutrient in biofortification of wheat grain. PhD Thesis, Sabanci Üniversity, Istanbul.
  • Kutman, U.B., Yıldız, B., Öztürk, L., Çakmak, İ., 2010. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chemistry, 87(1): 1-9.
  • Kutman, U.B., Yıldız, B., Çakmak, İ., 2011. İmproved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science, 53(1): 118-125.
  • Lasztity, R., 1996. The Chemistry of Cereal Proteins, Second Edition, CRC Press Inc., Florida.
  • Lerner, S.E., Seghezzo, M.L., Molfese, E.R., Ponzio, N.R., Cogliatti, M., Rogers, W.J., 2006. N- and S-fertiliser effects on grain composition, industrial quality and end-use in durum wheat. Journal Cereal Science, 44(1): 2-11.
  • Marschner, H., 1995. Mineral Nutrition of Higher Plants. Second Edition, Academic Press, London.
  • Marschner, H., Romheld, V., 1994. Strategies of plants for acquisition of iron. Plant and Soil, 165(2): 261-274.
  • Morgounov, A., Gomez-Becerra, HF., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Muminjanov, H., Zelenskiy, Y., Öztürk, L., Çakmak, İ., 2007. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155(1-2): 193-203.
  • Öztürk, L., Erenoğlu, B., Kaya, Y., Altıntaş, Z., Haklı, E., Andi, E., Yılmaz, Ö., 2011. Çinko’nun buğday tanesine taşınmasını etkileyen fizyolojik mekanizmaların araştırılması. TÜBİTAK Projesi Sonuç Raporu, Proje No: 108T436.
  • Palmer, C.M., Guerinot, M.L., 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology, 5(5): 333-340.
  • Pearson, J.N., Rengel, Z., Jenner, C.F., Graham, R.D., 1995. Transport of zinc and manganese to developing wheat grains. Physiologia Plantarum, 95(3): 449-455.
  • Peleg, Z., Saranga, Y., Yazıcı, A., Fahima, T., Öztürk, L., Çakmak, İ., 2008. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil, 306(1-2): 57-67.
  • Randall, P.J., Wrigley, C.W., 1986. Effects of sulfur supply on the yield, composition and quality of grain from cereals, oilseeds, and legumes. Advances in Cereal Science and Technology, 8: 171-206.
  • Ryant, P., Hřivna, L., 2004. The effect of sulphur fertilisation on yield and technological parameters of wheat grain. Annales Universitatis Mariae Curie-Skłodowska, Sectio E, 59(4): 1669-1678.
  • Sahota, T.S., 2006. Importance of Sulphur in Crop Production. Northwest Link, September, pp. 10-12.
  • Shi, R., Zhang, Y., Chen, X., Sun, Q., Zhang, F., Romheld, V., Zou ,C., 2010. Influence of Long term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science, 51(1): 165-170.
  • Singh, B.R., 2003. Sulfur and crop quality-agronomical strategies for crop improvement. Abstracts of COST Action 829 Meetings, Braunschweig, May 15-18, Germany, pp. 35-36.
  • Suzuki, M., Tsukamato, T., Inoue, H., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., Nishizawa, N.K., 2008. Deoxymugineic acid increases Zn translocation in Zn-deficienct rice plants. Plant Molecular Biology, 66(6): 609-617.
  • Takahashi, M., Terada, Y., Nakai, I., Nakanishi, H., Yoshimura, E., Mori, S., Nishizawa, N.K., 2003. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. The Plant Cell, 15(6): 1263-1280.
  • Torrance, J.W., Macarthur, M.W., Thornton, J.M., 2008. Evolution of binding sites for zinc and calcium ions playing structural roles. Proteins-Structure, Function and Bioinformatics, 71(2): 813-830.
  • Tsukamoto, T., Nakanishi, H., Uchida, H., Watanabe, S., Matsuhashi, S., Mori S., Nishizawa, N.K., 2009. Fe-52 translocation in barley as monitored by a positron-emitting tracer imaging system (Petis): Evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiology, 50(1): 48-57.
  • Uauy, C., Brevis, J.C., Dubcovsky, J., 2006a. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. Journal of Experimental Botany, 57(11): 2785-2794.
  • Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J., 2006b. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314(5803): 1298-1301.
  • Von Wiren, N., Klair, S., Bansal, S., Briat, J.F., Khodr, H., Shioiri, T., Leigh, R.A., Hider, R.C., 1999. Nicotianamine chelates both Fe-III and Fe-II. Implications for metal transport in plants. Plant Physiology, 119(3): 1107-1114.
  • Waters, B.M., Chu, H.H., Didonato, R.J., Roberts, L.A., Eisley, R.B., Lahner, B., Salt, D.E., Walker, E.L., 2006. Mutations in arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology, 141(4): 1446-1458.
  • Waters, B.M., Grusak, M.A., 2008. Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytologist, 177(2): 389-405.
  • Waters, B.M., Uauy, C., Dubcovsky, J., Grusak, M.A., 2009. Wheat (Triticum aestivum) proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany, 60(15): 4263-4274.
  • Welch, R.M., 1986. Effect of nutrient deficiencies on seed production and quality. In: B. Tinker, A. Lauchli (Eds), Advances in Plant Nutrition. Praeger Scientific, New York, pp. 205-247.
  • Welch, R.M., Graham, R.D., 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of experimental botany, 55(396): 353-364.
  • Yang, J., Zhang, J., 2006. Grain filling of cereals under soil drying. New Phytologist, 169(2): 223-236.
  • Zhao, F.J., Hawkesford, M.J., McGrath, S.P., 1999. Sulphur assimilation and effects on yield and quality of wheat. Journal Cereal Science, 30(1): 1-17.

The Role of Nitrogen and Sulphur Nutrition on Zinc and Iron Transport to Wheat Grain

Yıl 2017, Cilt: 4 Sayı: 1, 96 - 102, 28.02.2017
https://doi.org/10.19159/tutad.300725

Öz

Research results in recent years, revealed that cereal grains are low in mineral element (zinc and iron) concentrations. Therefore, improving the quality of nutrition is required. Significant effects of nitrogen and sulphur nutrition on grain yield and protein concentration of wheat were reported. Nitrogen nutrition of plants appears to be a critical component for an effective bio-fortification of food crops with Zn and Fe due to several physiological and molecular mechanisms. The sulphur requirement of wheat is lower than nitrogen. However, in case of sulphur deficiency, nitrogenous compounds (asparagines, glutamine) are accumulated, S-containing amino acid (sistein, methionine) synthesis and accumulation decreased in grain. Efforts to increase the Zn concentration (and Fe) in wheat grain are root uptake, root-toshoot transport, phloem loading, remobilization of Zn from source tissues into developing seeds and seed deposition of Zn. Researches provide increasing evidences about possible effects of nitrogenous fertilization on plant nitrogen mechanisms of the above mentioned factors. Recently, it has been reported that grain concentration of Zn and Fe can be enhanced by increasing the nitrogen (N) supply and N and Zn applications have a synergistic effect on grain Zn concentration of durum wheat. Zinc needs to form ligand with S-containing amino acids in order to be carried by phloem. In this study, the importance of nitrogen and sulfur nutrition on zinc and iron accumulation in the grain of wheat has emphasized.

Kaynakça

  • Alam, S., Kamei, S., Kawai, S., 2005. Effectiveness of phytosiderophore in absorption and translocation of 59Iron in barley in the presence of plant-borne, synthetic, and microbial chelators. Journal of plant nutrition, 28(10): 1709-1722.
  • Alloway, B.J., 2004. Zinc in Soils and Crop Nutrition. IZA Publications. International Zinc Association, Brussels, pp. 1-116.
  • Barneix, A.J., 2007. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. Journal of plant physiology, 164(5): 581-590.
  • Barut, H., 2012. Farklı doz ve zamanlarda uygulanan çinko ve azotun buğdayda tane çinko konsantrasyonu üzerine etkisi. Doktora tezi, Çukurova Üniversitesi Ziraat Fakültesi, Toprak Bilimi ve Bitki Besleme Bölümü, Adana.
  • Black, R.E., Lindsay, H.A., Bhutta, Z.A., Caulfield, L.E., De Onnis, M., Ezzati, M., Mathers, C., Rivera, J., 2008. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet, 371(9608): 243-260.
  • Çakmak, İ., 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302(1-2): 1-17.
  • Çakmak, İ., Kalaycı, M., Ekiz, H., Braun, H.J., Yılmaz, A., 1999. Zinc deficiency as an actual problem in plant and human nutrition in Turkey: A NATO-Science for Stability Project. Field Crops Research, 60(1): 175-188.
  • Çakmak, İ., Pfeiffer, W.H., Mcclafferty, B., 2010. Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 87(1): 10-20.
  • Çakmak, İ., Torun, B., Erenoğlu, B., Öztürk, L., Marschner, H., Kalaycı, M., Ekiz, H., Yılmaz, A., 1997. Morphological and physiological differences in the response of cereals to zinc deficiency. In: Wheat Prospects for Global Improvement, Springer Netherlands, pp. 427-435.
  • Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Jean, M.L., Misson, J., Schikora, A., Czernic, P., Mari, S., 2009. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 103(1): 1-11.
  • Deckard, E.L., Joppa, L.R., Hammond, J.J., Hareland, G.A., 1996. Grain protein determinants of the Langdon durum- diccoides chromosome substitution lines. Crop Science, 36(6): 1513-1516.
  • Distelfeld, A., Çakmak, İ., Peleg, Z., Öztürk, L., Yazıcı, A.M., Budak, H., Fahima, T., 2007. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiologia Plantarum, 129(3): 635-643.
  • Dudev, T., Lim, C., 2003. Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chemical Reviews, 103(3): 773-788.
  • Ekiz, H., Yılmaz, A., Gültekin, I., Bağcı, S.A., Torun, B., Çakmak, İ., 1998. Konya yöresinde çinko noksanlığı üzerine yürütülen araştırmalar ve sağlanan gelişmeler. I. Ulusal Çinko Kongresi, 12-16 Mayıs, Eskişehir, s. 115-121.
  • Erdal, I., Yılmaz, A., Taban, S., Eker, S., Çakmak, İ., 2002. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. Journal of Plant Nutrition, 25(1): 113-127.
  • Erenoğlu, E.B., Kutman, U.B., Ceylan, Y., Yıldız, B., Çakmak, İ., 2011. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist, 189(2): 438-448.
  • Feller, U., Fischer, A., 1994. Nitrogen metabolism in senescing leaves.Critical Reviews in Plant Sciences, 13(3): 241-273.
  • Graham, R.D., Ascher, J.S., Hynes, S.C., 1992. Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant and Soil, 146(1-2): 241-250.
  • Granvogl, M., Wieser, H., Koehler, P., Von Tucher, S., Schieberle, P., 2007. Influence of sulfur fertilization on the amounts of free amino acids in wheat. Correlation with baking properties as well as with 3-aminopropionamide and acrylamide generation during baking. Journal of Agricultural and Food Chemistry, 55(10): 4271-4277.
  • Hacısalihoğlu, G., Kochian, L.V., 2003. How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytologıst, 159(2): 341-350.
  • Haydon, M.J., Cobbett, C.S., 2007. Transporters of ligands for essential metal ions in plants. New Phytologist, 174(3): 499-506.
  • Kade, M., Barneix, A.J., Olmos, S., Dubcovsky, J., 2005. Nitrojen uptake and remobilization in tetraploid ‘Langdon’ durum wheat and a recombinant substitution line with the high grain protein gene Gpc- B1. Plant Breeding, 124(4): 343-349.
  • Kichey, T., Hirel, B., Heumez, E., Dubois, F., Le Gouis, J., 2007. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Research, 102(1): 22-32.
  • Kruger, C., Berkowitz, O., Stephan, U.W., Hell, R., 2002. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. Journal of Biological Chemistry, 277(28): 25062-25069.
  • Kutman, U.B., 2010. Roles of nitrogen and zinc nutrient in biofortification of wheat grain. PhD Thesis, Sabanci Üniversity, Istanbul.
  • Kutman, U.B., Yıldız, B., Öztürk, L., Çakmak, İ., 2010. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chemistry, 87(1): 1-9.
  • Kutman, U.B., Yıldız, B., Çakmak, İ., 2011. İmproved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science, 53(1): 118-125.
  • Lasztity, R., 1996. The Chemistry of Cereal Proteins, Second Edition, CRC Press Inc., Florida.
  • Lerner, S.E., Seghezzo, M.L., Molfese, E.R., Ponzio, N.R., Cogliatti, M., Rogers, W.J., 2006. N- and S-fertiliser effects on grain composition, industrial quality and end-use in durum wheat. Journal Cereal Science, 44(1): 2-11.
  • Marschner, H., 1995. Mineral Nutrition of Higher Plants. Second Edition, Academic Press, London.
  • Marschner, H., Romheld, V., 1994. Strategies of plants for acquisition of iron. Plant and Soil, 165(2): 261-274.
  • Morgounov, A., Gomez-Becerra, HF., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Muminjanov, H., Zelenskiy, Y., Öztürk, L., Çakmak, İ., 2007. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155(1-2): 193-203.
  • Öztürk, L., Erenoğlu, B., Kaya, Y., Altıntaş, Z., Haklı, E., Andi, E., Yılmaz, Ö., 2011. Çinko’nun buğday tanesine taşınmasını etkileyen fizyolojik mekanizmaların araştırılması. TÜBİTAK Projesi Sonuç Raporu, Proje No: 108T436.
  • Palmer, C.M., Guerinot, M.L., 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology, 5(5): 333-340.
  • Pearson, J.N., Rengel, Z., Jenner, C.F., Graham, R.D., 1995. Transport of zinc and manganese to developing wheat grains. Physiologia Plantarum, 95(3): 449-455.
  • Peleg, Z., Saranga, Y., Yazıcı, A., Fahima, T., Öztürk, L., Çakmak, İ., 2008. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil, 306(1-2): 57-67.
  • Randall, P.J., Wrigley, C.W., 1986. Effects of sulfur supply on the yield, composition and quality of grain from cereals, oilseeds, and legumes. Advances in Cereal Science and Technology, 8: 171-206.
  • Ryant, P., Hřivna, L., 2004. The effect of sulphur fertilisation on yield and technological parameters of wheat grain. Annales Universitatis Mariae Curie-Skłodowska, Sectio E, 59(4): 1669-1678.
  • Sahota, T.S., 2006. Importance of Sulphur in Crop Production. Northwest Link, September, pp. 10-12.
  • Shi, R., Zhang, Y., Chen, X., Sun, Q., Zhang, F., Romheld, V., Zou ,C., 2010. Influence of Long term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science, 51(1): 165-170.
  • Singh, B.R., 2003. Sulfur and crop quality-agronomical strategies for crop improvement. Abstracts of COST Action 829 Meetings, Braunschweig, May 15-18, Germany, pp. 35-36.
  • Suzuki, M., Tsukamato, T., Inoue, H., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., Nishizawa, N.K., 2008. Deoxymugineic acid increases Zn translocation in Zn-deficienct rice plants. Plant Molecular Biology, 66(6): 609-617.
  • Takahashi, M., Terada, Y., Nakai, I., Nakanishi, H., Yoshimura, E., Mori, S., Nishizawa, N.K., 2003. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. The Plant Cell, 15(6): 1263-1280.
  • Torrance, J.W., Macarthur, M.W., Thornton, J.M., 2008. Evolution of binding sites for zinc and calcium ions playing structural roles. Proteins-Structure, Function and Bioinformatics, 71(2): 813-830.
  • Tsukamoto, T., Nakanishi, H., Uchida, H., Watanabe, S., Matsuhashi, S., Mori S., Nishizawa, N.K., 2009. Fe-52 translocation in barley as monitored by a positron-emitting tracer imaging system (Petis): Evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiology, 50(1): 48-57.
  • Uauy, C., Brevis, J.C., Dubcovsky, J., 2006a. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. Journal of Experimental Botany, 57(11): 2785-2794.
  • Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J., 2006b. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314(5803): 1298-1301.
  • Von Wiren, N., Klair, S., Bansal, S., Briat, J.F., Khodr, H., Shioiri, T., Leigh, R.A., Hider, R.C., 1999. Nicotianamine chelates both Fe-III and Fe-II. Implications for metal transport in plants. Plant Physiology, 119(3): 1107-1114.
  • Waters, B.M., Chu, H.H., Didonato, R.J., Roberts, L.A., Eisley, R.B., Lahner, B., Salt, D.E., Walker, E.L., 2006. Mutations in arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology, 141(4): 1446-1458.
  • Waters, B.M., Grusak, M.A., 2008. Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytologist, 177(2): 389-405.
  • Waters, B.M., Uauy, C., Dubcovsky, J., Grusak, M.A., 2009. Wheat (Triticum aestivum) proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany, 60(15): 4263-4274.
  • Welch, R.M., 1986. Effect of nutrient deficiencies on seed production and quality. In: B. Tinker, A. Lauchli (Eds), Advances in Plant Nutrition. Praeger Scientific, New York, pp. 205-247.
  • Welch, R.M., Graham, R.D., 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of experimental botany, 55(396): 353-364.
  • Yang, J., Zhang, J., 2006. Grain filling of cereals under soil drying. New Phytologist, 169(2): 223-236.
  • Zhao, F.J., Hawkesford, M.J., McGrath, S.P., 1999. Sulphur assimilation and effects on yield and quality of wheat. Journal Cereal Science, 30(1): 1-17.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme / Review
Yazarlar

Hatun Barut

Sait Aykanat

Selim Eker

Yayımlanma Tarihi 28 Şubat 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 4 Sayı: 1

Kaynak Göster

APA Barut, H., Aykanat, S., & Eker, S. (2017). Azot ve Kükürt Beslenmesinin Buğday Tanesine Çinko ve Demir Taşınmasındaki Rolü. Türkiye Tarımsal Araştırmalar Dergisi, 4(1), 96-102. https://doi.org/10.19159/tutad.300725
AMA Barut H, Aykanat S, Eker S. Azot ve Kükürt Beslenmesinin Buğday Tanesine Çinko ve Demir Taşınmasındaki Rolü. TÜTAD. Şubat 2017;4(1):96-102. doi:10.19159/tutad.300725
Chicago Barut, Hatun, Sait Aykanat, ve Selim Eker. “Azot Ve Kükürt Beslenmesinin Buğday Tanesine Çinko Ve Demir Taşınmasındaki Rolü”. Türkiye Tarımsal Araştırmalar Dergisi 4, sy. 1 (Şubat 2017): 96-102. https://doi.org/10.19159/tutad.300725.
EndNote Barut H, Aykanat S, Eker S (01 Şubat 2017) Azot ve Kükürt Beslenmesinin Buğday Tanesine Çinko ve Demir Taşınmasındaki Rolü. Türkiye Tarımsal Araştırmalar Dergisi 4 1 96–102.
IEEE H. Barut, S. Aykanat, ve S. Eker, “Azot ve Kükürt Beslenmesinin Buğday Tanesine Çinko ve Demir Taşınmasındaki Rolü”, TÜTAD, c. 4, sy. 1, ss. 96–102, 2017, doi: 10.19159/tutad.300725.
ISNAD Barut, Hatun vd. “Azot Ve Kükürt Beslenmesinin Buğday Tanesine Çinko Ve Demir Taşınmasındaki Rolü”. Türkiye Tarımsal Araştırmalar Dergisi 4/1 (Şubat 2017), 96-102. https://doi.org/10.19159/tutad.300725.
JAMA Barut H, Aykanat S, Eker S. Azot ve Kükürt Beslenmesinin Buğday Tanesine Çinko ve Demir Taşınmasındaki Rolü. TÜTAD. 2017;4:96–102.
MLA Barut, Hatun vd. “Azot Ve Kükürt Beslenmesinin Buğday Tanesine Çinko Ve Demir Taşınmasındaki Rolü”. Türkiye Tarımsal Araştırmalar Dergisi, c. 4, sy. 1, 2017, ss. 96-102, doi:10.19159/tutad.300725.
Vancouver Barut H, Aykanat S, Eker S. Azot ve Kükürt Beslenmesinin Buğday Tanesine Çinko ve Demir Taşınmasındaki Rolü. TÜTAD. 2017;4(1):96-102.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667