Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyo-Priming Uygulamasının Mercimek (Lens culinaris M.)’te Çimlenme, Fide Gelişimi ve Tuzluluk Stresi Üzerine Etkisi

Yıl 2024, Cilt: 11 Sayı: 2, 128 - 140, 28.08.2024
https://doi.org/10.19159/tutad.1406770

Öz

Bu çalışmanın amacı, ACC (1-Aminosiklopropan-1-Karboksilat) deaminaz enzim aktivitesi gösteren bitki gelişimini teşvik edici bakteri (Plant growth promoting bacteria, PGPB) strainlerinin mercimek (Lens culinaris M.)’te tuzluluk stresi üzerine etkilerinin çimlenme ve erken fide döneminde incelenmesidir. Araştırmada, 3 tuz (NaCl) konsantrasyonu (kontrol, 100 ve 200 mM) ve 6 PGPB suşu (kontrol, KF3A, KF3B, KF58B, KF58C ve KF63C) kullanılmıştır. Kontrol grubunda yer alan tohumlara saf su ile priming (hidro-priming) uygulanmıştır. Çalışma Siirt Üniversitesi, Ziraat Fakültesi, Tarla Bitkileri Laboratuvarı’nda tesadüf parsellerinde faktöriyel deneme desenine göre 4 tekerrürlü olarak 2023 yılında yürütülmüştür. Araştırma sonuçlarına göre, fide kuru ağırlığı ve fide gücü indeksi hariç tüm parametreler tuzluluk stresinden veya biyo-priming uygulamalarından önemli ölçüde (p<0.05 veya p<0.01) etkilenmiştir. Araştırmada çimlenme yüzdesi % 91.8-99.4, ortalama çimlenme süresi 1.24-1.90 gün, çimlenme üniformite katsayısı 48.8-81.2, çimlenme enerjisi 9.3-81.9, çimlenme indeksi 10.1-18.0, fide uzunluğu 1.8-3.8 cm, kök uzunluğu 3.5-6.0 cm, fide kuru ağırlığı 0.0176-0.0240 g, kök kuru ağırlığı 0.0119-0.0206 g, fide gücü indeksi 3.3-4.1, lateral kök sayısı 1.3-4.3 adet ve lateral kök toplam uzunluğu 0.46-2.54 cm aralığında değişmiştir. KF58C ve KF63C optimum ve stres koşulları altında mercimek fidesinin çimlenmesini ve fide gelişimini teşvike ettiği, ancak KF3A, KF3B ve KF58B strainlerinin hidro-priming uygulamasına kıyasla daha zayıf bitki gelişimi sağladığı kaydedilmiştir. Özellikle KF58C straininin fide uzunluğu, kök uzunluğu, lateral kök sayısı ve lateral kök toplam uzunluğunu önemli ölçüde artırdığı, köklerde kuru madde birikimini % 114 oranında teşvik ettiği belirlenmitşir. Sonuç olarak, ACC deaminaz aktivitesine sahip PGPB strainleri ile biyo-priming işleminin mercimekte tuzluluk stresinin geliştirilmesi bakımından sürdürülebilir ve çevreci bir çözüm olabileceği düşünülmektedir.

Kaynakça

  • Abbas, T., Zahir, Z.A., Naveed, M., 2017. Bioherbicidal activity of allelopathic bacteria against weeds associated with wheat and their effects on growth of wheat under axenic conditions. BioControl, 62: 719-730.
  • Abdul-Baki, A.A., Anderson, J.D., 1973. Vigor determination in soybean seed by multiple criteria. Crop Science, 13: 630-633.
  • Acikbas, S., Ozyazici, M.A., Bektas, H., 2021. The effect of salinity on root architecture in forage pea (Pisum sativum ssp. arvense L.). Legume Research-An International Journal, 44(4): 407-412.
  • Açıkbaş, S., Özyazıcı, M.A., 2021. Silisyum tohum ön uygulamasının tuz stresine maruz bırakılan yem bezelyesi [Pisum sativum ssp arvense (L.) Poir]’nin çimlenme gelişimine etkisi. Middle East International Conference on Contemporary Scientific Studies-V, March 27-28, Ankara, Türkiye, s. 148-158.
  • Açıkbaş, S., Özyazıcı, M.A., 2022. Salisilik asit tohum ön uygulama işleminin burçak (Vicia ervilia L.) bitkisinin çimlenme ve fide gelişimi etkisi. ANADOLU 11 th International Conference on Applied Science, December 29-30, Diyarbakır, Türkiye, s. 1005-1013.
  • Açıkbaş, S., Özyazıcı, M.A., Bıçakçı, E., Özyazıcı, G., 2023. Germination and seedling development performances of some soybean (Glycine max (L.) Merrill) cultivars under salinity stress. Turkish Journal of Range and Forage Science, 4(2): 108-118.
  • Akhtar, N., Prakash, N., Pandey, V.K., 2020. Technology interventions through cluster front line demonstartion for enhancing yield of lentil under biotic stress and nutrient deficient soil. Journal of Pharmacognosy and Phytochemistry, 6: 251-254.
  • Al-ansari, F., Ksiksi, T., 2021. A quantitative assessment of germination parameters: The case of Crotalaria Persica and Tephrosia Apollinea. The Open Environmental Research Journal, 9: 13-21.
  • Ambastha, V., Friedmann, Y., Leshem, Y., 2020. Laterals take it better - Emerging and young lateral roots survive lethal salinity longer than the primary root in Arabidopsis. Scientific Reports, 10: 3291.
  • Angon, P.B., Ul-Arif, T., Samin, S.I., Habiba, U., Hossain, A., Brestic, M., 2022. How do plants respond to combined drought and salinity stress?-A systematic review. Plants, 11(21): 2884.
  • Anonim, 2023. Türkiye’de Mercimek Üretimi. Türkiye İstatistik Kurumu, (https://data.tuik.gov.tr/Kategori/ GetKategori?p=tarim-111&dil=1), Ankara, (Erişim Tarihi: 27.06.2023).
  • Anonymous, 1983. Seed Vigor Testing Handbook. Association of Official Seed Analysts (AOSA), Ithaca, New York.
  • Anonymous, 2015. Status World’s Soil Resources. Food and Agriculture Organization of the United Nations, (https://www.fao.org/faostat/en/#data/QCL), Rome, Italy, (ErişimTarihi: 25.05.2023).
  • Anonymous, 2023. Production Quantity of Lentil on the World. (https://www.statpub.com/index.php/ statistics), (Erişim Tarihi: 27.06.2023).
  • Arif, M.R., Islam, M.T., Robin, A.H.K., 2019. Salinity stress alters root morphology and root hair traits in Brassica napus. Plants, 8(7): 192.
  • Atouei, M.T., Pourbabaee, A.A., Shorafa, M., 2019. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. Iranian Journal of Science and Technology, 43: 2725-2733.
  • Ben Youssef, R., Jelali, N., Boukari, N., Albacete, A., Martinez, C., Alfocea, F.P., Abdelly, C., 2021. The efficiency of different priming agents for ımproving germination and early seedling growth of local tunisian barley under salinity stress. Plants, 10(11): 2264.
  • Bhise, K.K., Bhagwat, P.K., Dandge, P.B., 2017. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3 Biotech, 7: 105.
  • Bordi, A., 2010. The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38: 128-133.
  • Butcher, K., Wick, A.F., DeSutter, T., Chartterjee, A., Harmon, J., 2016. Soil salinity: A threat to global food security. Agronomy Journal, 108(6): 2189-2200.
  • Carillo, P., Annunziata, M.G., Pontecorvo, G., Fuggi, A., Woodrow, P., 2011. Salinity stress and salt tolerance. In: A. Shanker, B. Venkateswarlu (Eds.), Abiotic Stress in Plants: Mechanisms and Adaptations, 1st Edn., InTechOpen, pp. 21-38.
  • Ceritoglu, M., Erman, M., Çığ, F., Ceritoğlu, F., Uçar, Ö., Soysal, S., El Sabagh, A., 2023. Enhancement of root system architecture, seedling growth, and germination in lentil under salinity stress by seed priming with silicon and salicylic acid. Polish Journal of Environmental Studies, 32(5): 4481-4491.
  • Ceritoglu, M., Erman, M., Çığ, F., Uçar, Ö., Soysal, S., Erden, Z., Toprak, Ç.C., 2024. Bio-priming treatment with PGPB strains in cowpea production ıncreases grain yield and net ıncome. Research in Agricultural Sciences, 55(2): 79-88.
  • Ceritoğlu, M., Ceritoglu, F., Erman, M., Bektas, H., 2020. Root system variation of pulse crops at early vegetative stageearly vegetative stage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4): 2182-2197.
  • Ceritoğlu, M., Erman, M., 2020. Mitigation of salinity stress on chickpea germination by salicylic acid priming. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(3): 582-591.
  • Ceritoğlu, M., Erman, M., 2021. Effect of silicon priming treatments on germination and some agronomic traits in lentil. 3. International African Conference on Current Studies, February 27-28, Abomey-Calavi, Benin, pp. 436-444.
  • Chakma, P., Hossain, M., Rabbani, G., 2019. Effects of salinity stress on seed germination and seedling growth of tomato. Journal of Bangladesh Agricultural University, 17(4): 490-499.
  • Darabi, F., Hatami, A., Zare, M.J., 2014. Plant growth-promoting rhizobacteria improved growth, yield and yield components of lentil (Lens culinaris Medic) under shading growing conditions. International Journal of Biosciences, 4(12): 346-352.
  • Delahunty, A., Nuttall, J., Nicolas, M., Brand, J., 2018. Response of lentil to high temperature under variable water supply and carbon dioxide enrichment. Crop and Pasture Science, 69(11): 1103-1112.
  • Dirik, K.Ö., Saygılı, I., Özkurt, M., Sakin, M.A., 2020. Examining of salt stress tolerance of some local bread wheat (Triticum aestivum L.) genotypes at early growth stage. Turkish Journal of Agriculture - Food Science and Technology, 8(3): 688-693.
  • Ellis, R.H., Roberts, E.H., 1981. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9: 373-409.
  • Erman, M., Çığ, F., Ceritoğlu, F., Ceritoğlu, M., 2022a. Plant growth promoting bacteria enhances photosynthesis, nodulation and root system architecture in lentil under lead toxicity. Journal of Central European Agriculture, 23(3): 582-591.
  • Erman, M., Çığ, F., Ceritoğlu, M., 2022b. Mercimekte çimlenme ve fide gelişimi üzerine optimum PGPB-priming protokolünün belirlenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1): 62-70.
  • Fang, W., Liu, F., Wu, Z., Zhang, Z., Wang, K., 2022. Plant-associated bacteria as sources for the development of bioherbicides. Plants, 11: 3404.
  • Farooq, M., Gogoi, N., Hussain, M., Bartkahur, S., Paul, S., Bharadwaj, N., Migdadi, H.M., Alghamdi, S.S., Siddique, K.H.M., 2017. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 118: 199-217.
  • Farooq, M., Romdhane, L., Al Sulti, M.K.R.A., Rehman, A., Al-Busaidi, W.M., Lee, D.J., 2019. Morphological, physiological and biochemical aspects of osmopriming‐induced drought tolerance in lentil. Journal of Agronomy and Crop Science, 206(2): 176-186.
  • Feghhenabi, F., Hadi, H., Khodaverdiloo, H., van Genuchten, M., 2020. Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231: 106022.
  • Foti, C., Khah, E.M., Pavli, O.I., 2019. Germination profiling of lentil genotypes subjected to salinity stress. Plant Biology, 21(3): 480-486.
  • Ganguly, S., Roy, A., Murmu, S.K., Sagolsem, D., Sarkar, M., Sen, S., Das, D., Das, C., Chakraborty, P., Bhattacharyya, P.K., Nath, R., Tripathi, K., Sarker, A., Bhattacharyya, S., 2021. Variation in P-acquisition ability and acid phosphatase activity at the early vegetative stage of lentil and their validation on P-deficiency field. Acta Physiologiae Plantarum, 43: 109.
  • Guo, Y., Li, D., Liu, L., Sun, H., Zhu, L., Zhang, K., Zhao, H., Zhang, Y., Li, A., Bai, Z., Tian, L., Dong, H., Li, C., 2022. Seed priming with melatonin promotes seed germination and seedling growth of Triticale hexaploide L. under PEG-6000 ınduced drought stress. Frontiers in Plant Science, 13: 932912.
  • Gupta, A., Singh, S.K., Singh, M.K., Singh, V.K., Modi, A., Singh, P.K., Kumar, A., 2020. Plant growth-promoting rhizobacteria and their functional role in salinity stress management. In: P. Singh, A. Kumar and A. Borthakur (Eds.), Abatement of Environmental Pollutants Trends and Strategies, Elsevier Inc. All, pp. 151-160.
  • He, Y., Fu, J., Yu, C., Wang, X., Jiang, Q., Hong, J., Lu, K., Xue, G., Yan, C., James, A., Xu, L., Chen, J., Jiang, D., 2015. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. Journal of Experimental Botany, 66: 6877-6889.
  • Heidari, M., 2010. Nucleic acid metabolism, proline concentration and antioxidants enzyme activity in canola (Brassica nupus L.) under salinity stress. Agricultural Sciences in China, 9(4): 504-511.
  • Iqbal, S., Hussain, S., Qayyaum, M.A., Ashraf, M., Saifullah, M. 2020. The response of maize physiology under salinity stress and its coping strategies. In: A. Hossain (Ed.), Plant Stress Physiology, 1st Edn., IntechOpen, pp. 1-26.
  • Jha, U.C., Bohra, A., Jha, R., Parida, S.K., 2019. Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Reports, 38: 255-277.
  • Kalaycı, M., 2005. Örneklerle Jump Kullanımı ve Tarımsal Araştırma İçin Varyans Analizi Modelleri (1. Baskı). Eskişehir Anadolu Tarımsal Araştırma Enstitüsü Yayınları, Yayın No: 21, Eskişehir.
  • Keerthana, M., Ramakrishnan, R.S., Nagre, S., Kumar, A., Sharma, R., Upadhyay, A., Samaiya, R.K., 2024. Seed germination and seed vigour ınduction through foliar application of plant growth regulators and nutrients under drought stress in chickpea (Cicer arietinum L.). Archives of Current Research International, 24(1): 13-23.
  • Khalequzzaman, Ullah, H., Himanshu, S.K., Islam, N.T., Tisarum, R., Cha-um, S., Datta, A., 2023. Seed priming improves germination, yield, and water productivity of cotton under drought stress. Journal of Soil Science and Plant Nutrition, 23: 2418-2432.
  • Khodarahmpour, Z., Ifar, M., Motamedi, M., 2012. Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. African Journal of Biotechnology, 11: 298-304.
  • Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S., Verma, J.P., 2020. Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11: 1216.
  • Kumar, A., Verma, J.P., 2018. Does plant-Microbe interaction confer stress tolerance in plants: A review? Microbiological Research, 207: 41-52.
  • Langeroodi, A.R.S., Noora, R., 2017. Seed priming improves the germination and field performance of soybean under drought stress. The Journal of Animal & Plant Sciences, 27(5): 1611-1620.
  • Li, W., Zhang, H., Zeng, Y., Xiang, L., Lei, Z., Huang, Q., Li, T., Shen, F., Cheng, Q., 2020. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Scientific Reports, 10: 10626.
  • Lone, J.A., Raza, M.A., Erman, M., Çığ, F., Çığ, A., Ceritoğlu, M., Soysal, S., El Sabagh, A., 2022. A reliable screening characteristic for salinity tolerance of Brassica juncea at the root development and seedling stage and an effective screening method. In: Renaissance of Hill Agriculture through Advanced Genetics and Crop Breeding Interventions for Attaining Food and Nutrition Security under Climate Change Scenario, September 10-12, New Delhi, India, p. 36.
  • Mikail, N., Çığ, A., 2023. Estimation of root length using regression tree method in Sesbania punicea seeds. International Conference on Food, Agriculture and Animal Sciences, April 27-29, Sivas, Türkiye, pp. 286-294.
  • Nascimento, F.X., Rossi, M.J., Glick, B.R., 2018. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions. Frontiers in Plant Science, 9: 114.
  • Negrao, S., Schmöckel, S.M., Tester, M., 2017. Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1): 1-11.
  • Noorhosseini, S.A., Jokar, N.K., Damalas, C.A., 2018. Improving seed germination and early growth of garden cress (Lepidium sativum) and basil (Ocimum basilicum) with hydro-priming. Journal of Plant Growth Regulation, 37: 323-334.
  • Orozco-Mosqueda, M.C., Glick, B.R., Santoyo, G., 2020. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research, 235: 126439.
  • Othman, Y., Al-Karaki, G., Al-Tawaha, A.R., Al-Horani, A., 2006. Variation in germination and ion uptake in barley genotypes under salinity conditions. World Journal of Agricultural Sciences, 2: 11-15.
  • Özyazıcı, G., Açıkbaş, S., Özyazıcı, M.A., 2023. Effects of salicylic acid priming application in some switchgrass (Panicum virgatum L.) cultivars. International Journal of Nature and Life Sciences, 7(2): 137-146.
  • Palmer, S.M., Winham, D.M., Oberhauser, A.M., Litchfield, R.E., 2018. Socio-ecological barriers to dry grain pulse consumption among low-ıncome women: A mixed methods approach. Nutrients, 10(8): 1108.
  • Pandey, A.K., Sengar, R.S., 2020. Effect of salt stress on salt tolerant indices of morpho-physiological traits and yield attributes of lentil (Lens culinaris Medik.). International Journal of Chemical Studies, 8(1): 2292-2301.
  • Panuccio, M.R., Romeo, F., Marra, F., Mallamaci, C., Hussain, I., Muscolo, A., 2021. Salinity tolerance of lentil is achieved by enhanced proline accumulation, lower level of sodium uptake and modulation of photosynthetic traits. Journal of Agronomy and Crop Science, 208(1): 40-52.
  • Parihar, P., Singh, S., Singh, R., Singh, V.P., Prasad, S.M., 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22: 4056-4075.
  • Patil, G., Do, T., Vuong, T.D., Valliyodan, B., Lee, J.D., Chaudhary, J., Shannon, J.G., Nguyen, H.T., 2016. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Scientific Reports, 6: 1-13.
  • Qi, G., Pan, Z., Andriamanohiarisoamanana, F.J., Yamashiro, T., Iwasaki, M., Kawamoto, K., Umetsu, K., 2017. Isolation and characterization of plant growth promoting bacteria (PGPB) from anaerobic digestate and their effect on common wheat (Triticum aestivum) seedling growth. International Journal of Environmental & Agriculture Research, 3(11): 46-52.
  • Rampal, P., 2018. An analysis of protein consumption in India through plant and animal sources. Food and Nutrition Bulletin, 39(4): 564-580.
  • Sarker, B.C., Karmoker, J.L., 2011. Effects of phosphorus deficiency on accumulation of biochemical compounds in lentil (Lens culinaris Medik.). Bangladesh Journal of Botany, 40(1): 23-27.
  • Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K.H.M., Nayyar, H., 2017. Effects of drought, heat and their ınteraction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science, 8: 1776.
  • Shi-Ying, Z., Cong, F., Yong-xia, W., Yun-sheng, X., Wei, X., Xiao-Long, C., 2018. Salt-tolerant and plant growth-promoting bacteria isolated from high-yield paddy soil. Canadian Journal of Microbiology, 64: 968-978.
  • Sindhu, S.S., Khandelwal, A., Phour, M., Sehrawat, A., 2018. Bioherbicidal potential of rhizosphere microorganisms for ecofriendly weed management. In: V. Meena (Ed.), Role of Rhizospheric Microbes in Soil, 1st Edn., Springer, Singapore, pp. 331-376.
  • Sonnante, G., Hammer, K., Pignone, D., 2009. From the cradle of agriculture a handful of lentils: History of domestication. Rendiconti Lincei, 20: 21-37.
  • Tuteja, N., 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428: 419-438.
  • Warne, T., Ahmed, S., Shanks, C.B., Miller, P., 2019. Sustainability dimensions of a North American lentil system in a changing World. Frontiers in Sustainable Food Systems, 3: 88.
  • Wei, C., Ren, S., Yang, P., Wang, Y., He, X., Xu, Z., Wei, R., Wang, S., Chi, Y., Zhang, M., 2021. Effects of irrigation methods and salinity on CO2 emissions from farmland soil during growth and fallow periods. Science of The Total Environment, 752: 141639.
  • Yacoubi, R., Job, C., Belghazi, M., Chaibi, W., Job, D., 2013. Proteomic analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds germinated under salinity stress. Seed Science Research, 23(2): 99-110.
  • Yıldırım, C., Başak, M., Aydınoğlu, B., 2022. Gibberellik asit (GA3) uygulamalarının farklı tuz yoğunluklarında sorgum [Sorghum bicolor (L.) Moench] tohumlarının çimlenme ve fide gelişimi üzerine etkileri. Türkiye Tarımsal Araştırmalar Dergisi, 9(3): 323-333.

Effect of Bio-Priming Application on Germination, Seedling Growth and Salinity Stress in Lentil (Lens culinaris M.)

Yıl 2024, Cilt: 11 Sayı: 2, 128 - 140, 28.08.2024
https://doi.org/10.19159/tutad.1406770

Öz

The aim of this study is to investigate the effects of plant growth promoting bacteria (PGPB) strains exhibiting ACC (1-Aminocyclopropane-1-Carboxylate) deaminase enzyme activity on salt stress in germination and early seedling stages of lentil (Lens culinaris M.). The study utilized three NaCl concentrations (control, 100 mM, and 200 mM) and six PGPB strains (control, KF3A, KF3B, KF58B, KF58C and KF63C). Hydro-priming with distilled water was applied to seeds in the control group. The study was conducted in 2023 at Siirt University, Faculty of Agriculture, Field Crops laboratory, using a completely randomized factorial design with four replications. According to the results, all parameters, except seedling dry weight and seedling vigor index, were significantly (p<0.05 or p<0.01) affected by salt stress or bio-priming applications. Germination percentage ranged from 91.8% to 99.4%, average germination time from 1.24 to 1.90 days, germination uniformity coefficient from 48.8 to 81.2, germination energy from 9.3 to 81.9, germination index from 10.1 to 18.0, seedling length from 1.8 to 3.8 cm, root length from 3.5 to 6.0 cm, seedling dry weight from 0.0176 to 0.0240 g, root dry weight from 0.0119 to 0.0206 g, seedling vigor index from 3.3 to 4.1, lateral root number from 1.3 to 4.3, and total lateral root length from 0.46 to 2.54 cm. KF58C and KF63C were noted to promote germination and seedling development of lentil seedling under both optimum and stress conditions, while KF3A, KF3B, and KF58B strains provided weaker plant growth compared to hydro-priming. Particularly, the KF58C strain significantly increased seedling length, root length, lateral root number, and total lateral root length, stimulating dry matter accumulation in roots by 114%. In conclusion, it is considered that bio-priming with PGPB strains possessing ACC deaminase activity could offer a sustainable and environmentally friendly solution for enhancing lentil tolerance to salt stress.

Kaynakça

  • Abbas, T., Zahir, Z.A., Naveed, M., 2017. Bioherbicidal activity of allelopathic bacteria against weeds associated with wheat and their effects on growth of wheat under axenic conditions. BioControl, 62: 719-730.
  • Abdul-Baki, A.A., Anderson, J.D., 1973. Vigor determination in soybean seed by multiple criteria. Crop Science, 13: 630-633.
  • Acikbas, S., Ozyazici, M.A., Bektas, H., 2021. The effect of salinity on root architecture in forage pea (Pisum sativum ssp. arvense L.). Legume Research-An International Journal, 44(4): 407-412.
  • Açıkbaş, S., Özyazıcı, M.A., 2021. Silisyum tohum ön uygulamasının tuz stresine maruz bırakılan yem bezelyesi [Pisum sativum ssp arvense (L.) Poir]’nin çimlenme gelişimine etkisi. Middle East International Conference on Contemporary Scientific Studies-V, March 27-28, Ankara, Türkiye, s. 148-158.
  • Açıkbaş, S., Özyazıcı, M.A., 2022. Salisilik asit tohum ön uygulama işleminin burçak (Vicia ervilia L.) bitkisinin çimlenme ve fide gelişimi etkisi. ANADOLU 11 th International Conference on Applied Science, December 29-30, Diyarbakır, Türkiye, s. 1005-1013.
  • Açıkbaş, S., Özyazıcı, M.A., Bıçakçı, E., Özyazıcı, G., 2023. Germination and seedling development performances of some soybean (Glycine max (L.) Merrill) cultivars under salinity stress. Turkish Journal of Range and Forage Science, 4(2): 108-118.
  • Akhtar, N., Prakash, N., Pandey, V.K., 2020. Technology interventions through cluster front line demonstartion for enhancing yield of lentil under biotic stress and nutrient deficient soil. Journal of Pharmacognosy and Phytochemistry, 6: 251-254.
  • Al-ansari, F., Ksiksi, T., 2021. A quantitative assessment of germination parameters: The case of Crotalaria Persica and Tephrosia Apollinea. The Open Environmental Research Journal, 9: 13-21.
  • Ambastha, V., Friedmann, Y., Leshem, Y., 2020. Laterals take it better - Emerging and young lateral roots survive lethal salinity longer than the primary root in Arabidopsis. Scientific Reports, 10: 3291.
  • Angon, P.B., Ul-Arif, T., Samin, S.I., Habiba, U., Hossain, A., Brestic, M., 2022. How do plants respond to combined drought and salinity stress?-A systematic review. Plants, 11(21): 2884.
  • Anonim, 2023. Türkiye’de Mercimek Üretimi. Türkiye İstatistik Kurumu, (https://data.tuik.gov.tr/Kategori/ GetKategori?p=tarim-111&dil=1), Ankara, (Erişim Tarihi: 27.06.2023).
  • Anonymous, 1983. Seed Vigor Testing Handbook. Association of Official Seed Analysts (AOSA), Ithaca, New York.
  • Anonymous, 2015. Status World’s Soil Resources. Food and Agriculture Organization of the United Nations, (https://www.fao.org/faostat/en/#data/QCL), Rome, Italy, (ErişimTarihi: 25.05.2023).
  • Anonymous, 2023. Production Quantity of Lentil on the World. (https://www.statpub.com/index.php/ statistics), (Erişim Tarihi: 27.06.2023).
  • Arif, M.R., Islam, M.T., Robin, A.H.K., 2019. Salinity stress alters root morphology and root hair traits in Brassica napus. Plants, 8(7): 192.
  • Atouei, M.T., Pourbabaee, A.A., Shorafa, M., 2019. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. Iranian Journal of Science and Technology, 43: 2725-2733.
  • Ben Youssef, R., Jelali, N., Boukari, N., Albacete, A., Martinez, C., Alfocea, F.P., Abdelly, C., 2021. The efficiency of different priming agents for ımproving germination and early seedling growth of local tunisian barley under salinity stress. Plants, 10(11): 2264.
  • Bhise, K.K., Bhagwat, P.K., Dandge, P.B., 2017. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3 Biotech, 7: 105.
  • Bordi, A., 2010. The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38: 128-133.
  • Butcher, K., Wick, A.F., DeSutter, T., Chartterjee, A., Harmon, J., 2016. Soil salinity: A threat to global food security. Agronomy Journal, 108(6): 2189-2200.
  • Carillo, P., Annunziata, M.G., Pontecorvo, G., Fuggi, A., Woodrow, P., 2011. Salinity stress and salt tolerance. In: A. Shanker, B. Venkateswarlu (Eds.), Abiotic Stress in Plants: Mechanisms and Adaptations, 1st Edn., InTechOpen, pp. 21-38.
  • Ceritoglu, M., Erman, M., Çığ, F., Ceritoğlu, F., Uçar, Ö., Soysal, S., El Sabagh, A., 2023. Enhancement of root system architecture, seedling growth, and germination in lentil under salinity stress by seed priming with silicon and salicylic acid. Polish Journal of Environmental Studies, 32(5): 4481-4491.
  • Ceritoglu, M., Erman, M., Çığ, F., Uçar, Ö., Soysal, S., Erden, Z., Toprak, Ç.C., 2024. Bio-priming treatment with PGPB strains in cowpea production ıncreases grain yield and net ıncome. Research in Agricultural Sciences, 55(2): 79-88.
  • Ceritoğlu, M., Ceritoglu, F., Erman, M., Bektas, H., 2020. Root system variation of pulse crops at early vegetative stageearly vegetative stage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4): 2182-2197.
  • Ceritoğlu, M., Erman, M., 2020. Mitigation of salinity stress on chickpea germination by salicylic acid priming. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(3): 582-591.
  • Ceritoğlu, M., Erman, M., 2021. Effect of silicon priming treatments on germination and some agronomic traits in lentil. 3. International African Conference on Current Studies, February 27-28, Abomey-Calavi, Benin, pp. 436-444.
  • Chakma, P., Hossain, M., Rabbani, G., 2019. Effects of salinity stress on seed germination and seedling growth of tomato. Journal of Bangladesh Agricultural University, 17(4): 490-499.
  • Darabi, F., Hatami, A., Zare, M.J., 2014. Plant growth-promoting rhizobacteria improved growth, yield and yield components of lentil (Lens culinaris Medic) under shading growing conditions. International Journal of Biosciences, 4(12): 346-352.
  • Delahunty, A., Nuttall, J., Nicolas, M., Brand, J., 2018. Response of lentil to high temperature under variable water supply and carbon dioxide enrichment. Crop and Pasture Science, 69(11): 1103-1112.
  • Dirik, K.Ö., Saygılı, I., Özkurt, M., Sakin, M.A., 2020. Examining of salt stress tolerance of some local bread wheat (Triticum aestivum L.) genotypes at early growth stage. Turkish Journal of Agriculture - Food Science and Technology, 8(3): 688-693.
  • Ellis, R.H., Roberts, E.H., 1981. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9: 373-409.
  • Erman, M., Çığ, F., Ceritoğlu, F., Ceritoğlu, M., 2022a. Plant growth promoting bacteria enhances photosynthesis, nodulation and root system architecture in lentil under lead toxicity. Journal of Central European Agriculture, 23(3): 582-591.
  • Erman, M., Çığ, F., Ceritoğlu, M., 2022b. Mercimekte çimlenme ve fide gelişimi üzerine optimum PGPB-priming protokolünün belirlenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1): 62-70.
  • Fang, W., Liu, F., Wu, Z., Zhang, Z., Wang, K., 2022. Plant-associated bacteria as sources for the development of bioherbicides. Plants, 11: 3404.
  • Farooq, M., Gogoi, N., Hussain, M., Bartkahur, S., Paul, S., Bharadwaj, N., Migdadi, H.M., Alghamdi, S.S., Siddique, K.H.M., 2017. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 118: 199-217.
  • Farooq, M., Romdhane, L., Al Sulti, M.K.R.A., Rehman, A., Al-Busaidi, W.M., Lee, D.J., 2019. Morphological, physiological and biochemical aspects of osmopriming‐induced drought tolerance in lentil. Journal of Agronomy and Crop Science, 206(2): 176-186.
  • Feghhenabi, F., Hadi, H., Khodaverdiloo, H., van Genuchten, M., 2020. Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231: 106022.
  • Foti, C., Khah, E.M., Pavli, O.I., 2019. Germination profiling of lentil genotypes subjected to salinity stress. Plant Biology, 21(3): 480-486.
  • Ganguly, S., Roy, A., Murmu, S.K., Sagolsem, D., Sarkar, M., Sen, S., Das, D., Das, C., Chakraborty, P., Bhattacharyya, P.K., Nath, R., Tripathi, K., Sarker, A., Bhattacharyya, S., 2021. Variation in P-acquisition ability and acid phosphatase activity at the early vegetative stage of lentil and their validation on P-deficiency field. Acta Physiologiae Plantarum, 43: 109.
  • Guo, Y., Li, D., Liu, L., Sun, H., Zhu, L., Zhang, K., Zhao, H., Zhang, Y., Li, A., Bai, Z., Tian, L., Dong, H., Li, C., 2022. Seed priming with melatonin promotes seed germination and seedling growth of Triticale hexaploide L. under PEG-6000 ınduced drought stress. Frontiers in Plant Science, 13: 932912.
  • Gupta, A., Singh, S.K., Singh, M.K., Singh, V.K., Modi, A., Singh, P.K., Kumar, A., 2020. Plant growth-promoting rhizobacteria and their functional role in salinity stress management. In: P. Singh, A. Kumar and A. Borthakur (Eds.), Abatement of Environmental Pollutants Trends and Strategies, Elsevier Inc. All, pp. 151-160.
  • He, Y., Fu, J., Yu, C., Wang, X., Jiang, Q., Hong, J., Lu, K., Xue, G., Yan, C., James, A., Xu, L., Chen, J., Jiang, D., 2015. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. Journal of Experimental Botany, 66: 6877-6889.
  • Heidari, M., 2010. Nucleic acid metabolism, proline concentration and antioxidants enzyme activity in canola (Brassica nupus L.) under salinity stress. Agricultural Sciences in China, 9(4): 504-511.
  • Iqbal, S., Hussain, S., Qayyaum, M.A., Ashraf, M., Saifullah, M. 2020. The response of maize physiology under salinity stress and its coping strategies. In: A. Hossain (Ed.), Plant Stress Physiology, 1st Edn., IntechOpen, pp. 1-26.
  • Jha, U.C., Bohra, A., Jha, R., Parida, S.K., 2019. Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Reports, 38: 255-277.
  • Kalaycı, M., 2005. Örneklerle Jump Kullanımı ve Tarımsal Araştırma İçin Varyans Analizi Modelleri (1. Baskı). Eskişehir Anadolu Tarımsal Araştırma Enstitüsü Yayınları, Yayın No: 21, Eskişehir.
  • Keerthana, M., Ramakrishnan, R.S., Nagre, S., Kumar, A., Sharma, R., Upadhyay, A., Samaiya, R.K., 2024. Seed germination and seed vigour ınduction through foliar application of plant growth regulators and nutrients under drought stress in chickpea (Cicer arietinum L.). Archives of Current Research International, 24(1): 13-23.
  • Khalequzzaman, Ullah, H., Himanshu, S.K., Islam, N.T., Tisarum, R., Cha-um, S., Datta, A., 2023. Seed priming improves germination, yield, and water productivity of cotton under drought stress. Journal of Soil Science and Plant Nutrition, 23: 2418-2432.
  • Khodarahmpour, Z., Ifar, M., Motamedi, M., 2012. Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. African Journal of Biotechnology, 11: 298-304.
  • Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S., Verma, J.P., 2020. Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11: 1216.
  • Kumar, A., Verma, J.P., 2018. Does plant-Microbe interaction confer stress tolerance in plants: A review? Microbiological Research, 207: 41-52.
  • Langeroodi, A.R.S., Noora, R., 2017. Seed priming improves the germination and field performance of soybean under drought stress. The Journal of Animal & Plant Sciences, 27(5): 1611-1620.
  • Li, W., Zhang, H., Zeng, Y., Xiang, L., Lei, Z., Huang, Q., Li, T., Shen, F., Cheng, Q., 2020. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Scientific Reports, 10: 10626.
  • Lone, J.A., Raza, M.A., Erman, M., Çığ, F., Çığ, A., Ceritoğlu, M., Soysal, S., El Sabagh, A., 2022. A reliable screening characteristic for salinity tolerance of Brassica juncea at the root development and seedling stage and an effective screening method. In: Renaissance of Hill Agriculture through Advanced Genetics and Crop Breeding Interventions for Attaining Food and Nutrition Security under Climate Change Scenario, September 10-12, New Delhi, India, p. 36.
  • Mikail, N., Çığ, A., 2023. Estimation of root length using regression tree method in Sesbania punicea seeds. International Conference on Food, Agriculture and Animal Sciences, April 27-29, Sivas, Türkiye, pp. 286-294.
  • Nascimento, F.X., Rossi, M.J., Glick, B.R., 2018. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions. Frontiers in Plant Science, 9: 114.
  • Negrao, S., Schmöckel, S.M., Tester, M., 2017. Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1): 1-11.
  • Noorhosseini, S.A., Jokar, N.K., Damalas, C.A., 2018. Improving seed germination and early growth of garden cress (Lepidium sativum) and basil (Ocimum basilicum) with hydro-priming. Journal of Plant Growth Regulation, 37: 323-334.
  • Orozco-Mosqueda, M.C., Glick, B.R., Santoyo, G., 2020. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research, 235: 126439.
  • Othman, Y., Al-Karaki, G., Al-Tawaha, A.R., Al-Horani, A., 2006. Variation in germination and ion uptake in barley genotypes under salinity conditions. World Journal of Agricultural Sciences, 2: 11-15.
  • Özyazıcı, G., Açıkbaş, S., Özyazıcı, M.A., 2023. Effects of salicylic acid priming application in some switchgrass (Panicum virgatum L.) cultivars. International Journal of Nature and Life Sciences, 7(2): 137-146.
  • Palmer, S.M., Winham, D.M., Oberhauser, A.M., Litchfield, R.E., 2018. Socio-ecological barriers to dry grain pulse consumption among low-ıncome women: A mixed methods approach. Nutrients, 10(8): 1108.
  • Pandey, A.K., Sengar, R.S., 2020. Effect of salt stress on salt tolerant indices of morpho-physiological traits and yield attributes of lentil (Lens culinaris Medik.). International Journal of Chemical Studies, 8(1): 2292-2301.
  • Panuccio, M.R., Romeo, F., Marra, F., Mallamaci, C., Hussain, I., Muscolo, A., 2021. Salinity tolerance of lentil is achieved by enhanced proline accumulation, lower level of sodium uptake and modulation of photosynthetic traits. Journal of Agronomy and Crop Science, 208(1): 40-52.
  • Parihar, P., Singh, S., Singh, R., Singh, V.P., Prasad, S.M., 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22: 4056-4075.
  • Patil, G., Do, T., Vuong, T.D., Valliyodan, B., Lee, J.D., Chaudhary, J., Shannon, J.G., Nguyen, H.T., 2016. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Scientific Reports, 6: 1-13.
  • Qi, G., Pan, Z., Andriamanohiarisoamanana, F.J., Yamashiro, T., Iwasaki, M., Kawamoto, K., Umetsu, K., 2017. Isolation and characterization of plant growth promoting bacteria (PGPB) from anaerobic digestate and their effect on common wheat (Triticum aestivum) seedling growth. International Journal of Environmental & Agriculture Research, 3(11): 46-52.
  • Rampal, P., 2018. An analysis of protein consumption in India through plant and animal sources. Food and Nutrition Bulletin, 39(4): 564-580.
  • Sarker, B.C., Karmoker, J.L., 2011. Effects of phosphorus deficiency on accumulation of biochemical compounds in lentil (Lens culinaris Medik.). Bangladesh Journal of Botany, 40(1): 23-27.
  • Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K.H.M., Nayyar, H., 2017. Effects of drought, heat and their ınteraction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science, 8: 1776.
  • Shi-Ying, Z., Cong, F., Yong-xia, W., Yun-sheng, X., Wei, X., Xiao-Long, C., 2018. Salt-tolerant and plant growth-promoting bacteria isolated from high-yield paddy soil. Canadian Journal of Microbiology, 64: 968-978.
  • Sindhu, S.S., Khandelwal, A., Phour, M., Sehrawat, A., 2018. Bioherbicidal potential of rhizosphere microorganisms for ecofriendly weed management. In: V. Meena (Ed.), Role of Rhizospheric Microbes in Soil, 1st Edn., Springer, Singapore, pp. 331-376.
  • Sonnante, G., Hammer, K., Pignone, D., 2009. From the cradle of agriculture a handful of lentils: History of domestication. Rendiconti Lincei, 20: 21-37.
  • Tuteja, N., 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428: 419-438.
  • Warne, T., Ahmed, S., Shanks, C.B., Miller, P., 2019. Sustainability dimensions of a North American lentil system in a changing World. Frontiers in Sustainable Food Systems, 3: 88.
  • Wei, C., Ren, S., Yang, P., Wang, Y., He, X., Xu, Z., Wei, R., Wang, S., Chi, Y., Zhang, M., 2021. Effects of irrigation methods and salinity on CO2 emissions from farmland soil during growth and fallow periods. Science of The Total Environment, 752: 141639.
  • Yacoubi, R., Job, C., Belghazi, M., Chaibi, W., Job, D., 2013. Proteomic analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds germinated under salinity stress. Seed Science Research, 23(2): 99-110.
  • Yıldırım, C., Başak, M., Aydınoğlu, B., 2022. Gibberellik asit (GA3) uygulamalarının farklı tuz yoğunluklarında sorgum [Sorghum bicolor (L.) Moench] tohumlarının çimlenme ve fide gelişimi üzerine etkileri. Türkiye Tarımsal Araştırmalar Dergisi, 9(3): 323-333.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tahıllar ve Yemeklik Tane Baklagiller
Bölüm Araştırma Makalesi / Research Article
Yazarlar

Berfin Tarhan 0009-0006-0142-6267

Mustafa Ceritoğlu 0000-0002-4138-4579

Yayımlanma Tarihi 28 Ağustos 2024
Gönderilme Tarihi 19 Aralık 2023
Kabul Tarihi 28 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 2

Kaynak Göster

APA Tarhan, B., & Ceritoğlu, M. (2024). Biyo-Priming Uygulamasının Mercimek (Lens culinaris M.)’te Çimlenme, Fide Gelişimi ve Tuzluluk Stresi Üzerine Etkisi. Türkiye Tarımsal Araştırmalar Dergisi, 11(2), 128-140. https://doi.org/10.19159/tutad.1406770
AMA Tarhan B, Ceritoğlu M. Biyo-Priming Uygulamasının Mercimek (Lens culinaris M.)’te Çimlenme, Fide Gelişimi ve Tuzluluk Stresi Üzerine Etkisi. TÜTAD. Ağustos 2024;11(2):128-140. doi:10.19159/tutad.1406770
Chicago Tarhan, Berfin, ve Mustafa Ceritoğlu. “Biyo-Priming Uygulamasının Mercimek (Lens Culinaris M.)’te Çimlenme, Fide Gelişimi Ve Tuzluluk Stresi Üzerine Etkisi”. Türkiye Tarımsal Araştırmalar Dergisi 11, sy. 2 (Ağustos 2024): 128-40. https://doi.org/10.19159/tutad.1406770.
EndNote Tarhan B, Ceritoğlu M (01 Ağustos 2024) Biyo-Priming Uygulamasının Mercimek (Lens culinaris M.)’te Çimlenme, Fide Gelişimi ve Tuzluluk Stresi Üzerine Etkisi. Türkiye Tarımsal Araştırmalar Dergisi 11 2 128–140.
IEEE B. Tarhan ve M. Ceritoğlu, “Biyo-Priming Uygulamasının Mercimek (Lens culinaris M.)’te Çimlenme, Fide Gelişimi ve Tuzluluk Stresi Üzerine Etkisi”, TÜTAD, c. 11, sy. 2, ss. 128–140, 2024, doi: 10.19159/tutad.1406770.
ISNAD Tarhan, Berfin - Ceritoğlu, Mustafa. “Biyo-Priming Uygulamasının Mercimek (Lens Culinaris M.)’te Çimlenme, Fide Gelişimi Ve Tuzluluk Stresi Üzerine Etkisi”. Türkiye Tarımsal Araştırmalar Dergisi 11/2 (Ağustos 2024), 128-140. https://doi.org/10.19159/tutad.1406770.
JAMA Tarhan B, Ceritoğlu M. Biyo-Priming Uygulamasının Mercimek (Lens culinaris M.)’te Çimlenme, Fide Gelişimi ve Tuzluluk Stresi Üzerine Etkisi. TÜTAD. 2024;11:128–140.
MLA Tarhan, Berfin ve Mustafa Ceritoğlu. “Biyo-Priming Uygulamasının Mercimek (Lens Culinaris M.)’te Çimlenme, Fide Gelişimi Ve Tuzluluk Stresi Üzerine Etkisi”. Türkiye Tarımsal Araştırmalar Dergisi, c. 11, sy. 2, 2024, ss. 128-40, doi:10.19159/tutad.1406770.
Vancouver Tarhan B, Ceritoğlu M. Biyo-Priming Uygulamasının Mercimek (Lens culinaris M.)’te Çimlenme, Fide Gelişimi ve Tuzluluk Stresi Üzerine Etkisi. TÜTAD. 2024;11(2):128-40.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667