BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 9 Sayı: 4, 693 - 703, 01.12.2019

Öz

Kaynakça

  • Ahmad, A., Baig, A. Q., and Imran, M., On super edge-magicness of graphs, Utilitas Math. to appear.
  • Baˇca, M., Dafik, Miller, M., and Ryan, J., (2008), Edge-antimagic total labeling of disjoint unions of caterpillars, J. Comb. Math. Comb. Computing, 65, pp. 61–70.
  • Baˇca, M., Y. Lin, Y., Miller, M., and Simanjuntak, R., (2001), New constructions of magic and antimagic graph labelings, Utilitas Math., 60, pp. 229–239.
  • Baˇca, M., Lin, Y. and Muntaner-Batle, F.A., (2007), Super edge-antimagic labelings of the path-like trees, Utilitas Math.,73, pp. 117–128.
  • Baˇca, M., and M. Miller, M., (2008), Super Edge-Antimagic Graphs, Brown Walker Press, Boca Raton, Florida USA.
  • Baˇca, M.,, Lin, Y., Miller, M., and M. Z. Youssel, M. Z., Edge-antimagic graphs, Discrete Math., to appear.
  • Baskoro, E. T., and Cholily. Y., (2004), Expanding super edge-magic graphs, Proc. ITB Sains and Tek.,36:2, pp. 117–125.
  • Enomoto, H., Llado, A. S., Nakamigawa, T., and Ringle, G., (1980), Super edge-magic graphs, SUT J. Math., 34, pp. 105–109.
  • Figueroa-Centeno, R. M., Ichishima, R., and Muntaner-Batle, F. A., (2001), The place of super edge- magic labeling among other classes of labeling, Discrete Math., 231, pp. 153–168.
  • Figueroa-Centeno, R. M., Ichishima, R., and Muntaner-Batle, F. A., (2002), On super edge-magic graphs, Ars Combin., 64, pp. 81–95.
  • Figueroa-Centeno, R. M., Ichishima, R., and Mantaner-Batle, F. A., (2005), On edge-magic labeling of certain disjoint union graphs, Australas. J. Combin., 32, pp. 225–242.
  • Fukuchi, Y., A recursive theorem for super edge-magic labeling of trees, (2000), SUT J. Math., 36, pp. 279–285.
  • J. A. Gallian, (2009), A dynamic survey of graph labeling, Electronic J. Combin.
  • Hussain, M., Baskoro, E. T., Slamin, (2009) On super edge-magic total labeling of banana trees, Utilitas Math., 79, pp. 243–251.
  • Javaid, M., (2014), On super edge-antimagic total labeling of generalized extended w-trees, Interna- tional Journl of Mathematics and soft Computing, 4, pp. 17–25.
  • A. Kotzig, A., and Rosa, A., (1970), Magic valuations of finite graphs, Canad. Math. Bull., 13, pp. 451–461.
  • Kotzig, A., and Rosa, A Magic valuation of complete graphs, (1972), Centre de Recherches Mathe- matiques, Universite de Montreal, CRM–175.
  • Lee, S. M., and Shah, Q. X., All trees with at most 17 vertices are super edge-magic, (2002), 16th MCCCC Conference, Carbondale, University Southern Illinois.
  • Raheem, A., Javaid, M., Baig, A. Q., (2016), Antimagic labeling of the union of subdivided stars, TWMS J. App. Eng. Math.,6(2), pp.244–250.
  • Raheem, A., Javaid, M., Baig, A. Q., (2016), On antimagicness of generalized extene w-trees, science Internation Journal, 28(5),pp. 5057–5022.
  • Raheem, A., (2018), On super (a, d)-edge antimagic total labeling of a subdivided stars, Ars Combin., 136, pp. 169–179.
  • K. A. Sugeng. K. A., Miller, M., Baca, M., (a, d)-edge-antimagic total labeling of caterpillars, (2005), Lecture Notes Comput. Sci., 3330 pp. 169–180.
  • West, D. B.,(1996), An Introduction to Graph Theory, Prentice-Hall.

ON SUPER a; d -EAT VALUATION OF SUBDIVIDED CATERPILLAR

Yıl 2019, Cilt: 9 Sayı: 4, 693 - 703, 01.12.2019

Öz

Let G = V G , E G be a graph with v = |V G | vertices and e = |E G | edges. A bijective function λ : V G ∪ E G ↔ {1, 2, . . . , v + e} is called an a, d - edge antimagic total EAT labeling valuation if the weight of all the edges {w xy : xy ∈ E G } form an arithmetic sequence starting with first term a and having common difference d, where w xy = λ x + λ y + λ xy . And, if λ V = {1, 2, . . . , v} then G is super a, d -edge antimagic total EAT graph. In this paper, we determine the super a,d -edge antimagic total EAT labeling of the subdivided caterpillar for different values of the parameter d.

Kaynakça

  • Ahmad, A., Baig, A. Q., and Imran, M., On super edge-magicness of graphs, Utilitas Math. to appear.
  • Baˇca, M., Dafik, Miller, M., and Ryan, J., (2008), Edge-antimagic total labeling of disjoint unions of caterpillars, J. Comb. Math. Comb. Computing, 65, pp. 61–70.
  • Baˇca, M., Y. Lin, Y., Miller, M., and Simanjuntak, R., (2001), New constructions of magic and antimagic graph labelings, Utilitas Math., 60, pp. 229–239.
  • Baˇca, M., Lin, Y. and Muntaner-Batle, F.A., (2007), Super edge-antimagic labelings of the path-like trees, Utilitas Math.,73, pp. 117–128.
  • Baˇca, M., and M. Miller, M., (2008), Super Edge-Antimagic Graphs, Brown Walker Press, Boca Raton, Florida USA.
  • Baˇca, M.,, Lin, Y., Miller, M., and M. Z. Youssel, M. Z., Edge-antimagic graphs, Discrete Math., to appear.
  • Baskoro, E. T., and Cholily. Y., (2004), Expanding super edge-magic graphs, Proc. ITB Sains and Tek.,36:2, pp. 117–125.
  • Enomoto, H., Llado, A. S., Nakamigawa, T., and Ringle, G., (1980), Super edge-magic graphs, SUT J. Math., 34, pp. 105–109.
  • Figueroa-Centeno, R. M., Ichishima, R., and Muntaner-Batle, F. A., (2001), The place of super edge- magic labeling among other classes of labeling, Discrete Math., 231, pp. 153–168.
  • Figueroa-Centeno, R. M., Ichishima, R., and Muntaner-Batle, F. A., (2002), On super edge-magic graphs, Ars Combin., 64, pp. 81–95.
  • Figueroa-Centeno, R. M., Ichishima, R., and Mantaner-Batle, F. A., (2005), On edge-magic labeling of certain disjoint union graphs, Australas. J. Combin., 32, pp. 225–242.
  • Fukuchi, Y., A recursive theorem for super edge-magic labeling of trees, (2000), SUT J. Math., 36, pp. 279–285.
  • J. A. Gallian, (2009), A dynamic survey of graph labeling, Electronic J. Combin.
  • Hussain, M., Baskoro, E. T., Slamin, (2009) On super edge-magic total labeling of banana trees, Utilitas Math., 79, pp. 243–251.
  • Javaid, M., (2014), On super edge-antimagic total labeling of generalized extended w-trees, Interna- tional Journl of Mathematics and soft Computing, 4, pp. 17–25.
  • A. Kotzig, A., and Rosa, A., (1970), Magic valuations of finite graphs, Canad. Math. Bull., 13, pp. 451–461.
  • Kotzig, A., and Rosa, A Magic valuation of complete graphs, (1972), Centre de Recherches Mathe- matiques, Universite de Montreal, CRM–175.
  • Lee, S. M., and Shah, Q. X., All trees with at most 17 vertices are super edge-magic, (2002), 16th MCCCC Conference, Carbondale, University Southern Illinois.
  • Raheem, A., Javaid, M., Baig, A. Q., (2016), Antimagic labeling of the union of subdivided stars, TWMS J. App. Eng. Math.,6(2), pp.244–250.
  • Raheem, A., Javaid, M., Baig, A. Q., (2016), On antimagicness of generalized extene w-trees, science Internation Journal, 28(5),pp. 5057–5022.
  • Raheem, A., (2018), On super (a, d)-edge antimagic total labeling of a subdivided stars, Ars Combin., 136, pp. 169–179.
  • K. A. Sugeng. K. A., Miller, M., Baca, M., (a, d)-edge-antimagic total labeling of caterpillars, (2005), Lecture Notes Comput. Sci., 3330 pp. 169–180.
  • West, D. B.,(1996), An Introduction to Graph Theory, Prentice-Hall.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

A. Raheem Bu kişi benim

M. Javaid Bu kişi benim

M. A. Umar Bu kişi benim

G. C. Lau Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 4

Kaynak Göster