BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 9 Sayı: 4, 792 - 799, 01.12.2019

Öz

Kaynakça

  • Abdeljawad, T (2015), On conformable fractional calculus, Journal of Computational and Applied Mathematics 279, pp. 57–66.
  • Anderson, D. R. (2016), Taylor’s formula and integral inequalities for conformable fractional deriva- tives, Contributions in Mathematics and Engineering, in Honor of Constantin Caratheodory, Springer, New York.
  • Hammad M. A. and Khalil R. (2014), Conformable fractional heat differential equations, International Journal of Differential Equations and Applications 13( 3), pp. 177-183.
  • Hammad M. A. and Khalil R. (2014), Abel’s formula and wronskian for conformable fractional differ- ential equations, International Journal of Differential Equations and Applications 13(3), pp. 177-183.
  • Iyiola O.S.and Nwaeze E.R.(2016), Some new results on the new conformable fractional calculus with application using D’Alambert approach, Progr. Fract. Differ. Appl., 2(2), pp.115-122.
  • Khalil R., Al horani M., Yousef A. and Sababheh M.(2014), A new definition of fractional derivative, Journal of Computational Apllied Mathematics, 264, pp. 65-70.
  • Katugampola U.N. (2011), New approach to a generalized fractional integral, Appl. Math. Comput., 218(3), pp. 860–865.
  • Katugampola U.N. (2014), New approach to generalized fractional derivatives, B. Math. Anal. App., 6(4), pp. 1–15.
  • Kilbas A. A., Srivastava H.M. and Trujillo J.J. (2016), Theory and Applications of Fractional Differ- ential Equations, Elsevier B.V., Amsterdam, Netherlands.
  • Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993), Fractional Integrals and Derivatives: Theory and Applications, Yverdon: Gordon and Breach.

ON GENERALIZED THE CONFORMABLE FRACTIONAL CALCULUS

Yıl 2019, Cilt: 9 Sayı: 4, 792 - 799, 01.12.2019

Öz

In this paper, we generalize the conformable fractional derivative and integral and obtain several results such as the product rule, quotient rule, chain rule.

Kaynakça

  • Abdeljawad, T (2015), On conformable fractional calculus, Journal of Computational and Applied Mathematics 279, pp. 57–66.
  • Anderson, D. R. (2016), Taylor’s formula and integral inequalities for conformable fractional deriva- tives, Contributions in Mathematics and Engineering, in Honor of Constantin Caratheodory, Springer, New York.
  • Hammad M. A. and Khalil R. (2014), Conformable fractional heat differential equations, International Journal of Differential Equations and Applications 13( 3), pp. 177-183.
  • Hammad M. A. and Khalil R. (2014), Abel’s formula and wronskian for conformable fractional differ- ential equations, International Journal of Differential Equations and Applications 13(3), pp. 177-183.
  • Iyiola O.S.and Nwaeze E.R.(2016), Some new results on the new conformable fractional calculus with application using D’Alambert approach, Progr. Fract. Differ. Appl., 2(2), pp.115-122.
  • Khalil R., Al horani M., Yousef A. and Sababheh M.(2014), A new definition of fractional derivative, Journal of Computational Apllied Mathematics, 264, pp. 65-70.
  • Katugampola U.N. (2011), New approach to a generalized fractional integral, Appl. Math. Comput., 218(3), pp. 860–865.
  • Katugampola U.N. (2014), New approach to generalized fractional derivatives, B. Math. Anal. App., 6(4), pp. 1–15.
  • Kilbas A. A., Srivastava H.M. and Trujillo J.J. (2016), Theory and Applications of Fractional Differ- ential Equations, Elsevier B.V., Amsterdam, Netherlands.
  • Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993), Fractional Integrals and Derivatives: Theory and Applications, Yverdon: Gordon and Breach.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

M. Z. Sarıkaya Bu kişi benim

H. Budak Bu kişi benim

H. Usta Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 4

Kaynak Göster