BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 9 Sayı: 4, 930 - 935, 01.12.2019

Öz

Kaynakça

  • Cockayne, E. J. and Hedetniemi, S. T., (1977), Towards a theory of domination in graphs, Networks, 7, pp. 247–261.
  • Cuaresma, E. C. Jr. and Paluga, R. N., (2015), On the hub number of some graphs, Annals of Studies in Science and Humanities, 1(1), pp. 17–24.
  • Frucht, R. and Harary, F., (1970), On the corona of two graphs, Aequat Math., 4, pp. 322–325.
  • Harary, F., (1969), Graph Theory. Addison Wesley, Reading Mass.
  • Haynes, T. W., Hedetniemi, S. T. and Slater, P. J., (1998), Fundamentals of Domination in Graphs, Marcel Dekker, Inc.
  • Khalaf, S. I., Mathad, V. and Mahde, S. S., (2018), Hubtic number in graphs, Opuscula Math., 38(6), pp. 841–847.
  • Khalaf, S. I., Mathad, V. and Mahde, S. S., (2018), Edge hubtic number in graphs, Int. J. Math. Combin., 3, pp. 141–146.
  • Khalaf, S. I. and Mathad, V., (2019), Restrained hub number in graphs, Bull. Int. Math. Virtual Inst., 9, pp. 103–109.
  • Mahde, S. S., Mathad, V. and Sahal, A. M., (2015), Hub-integrity of graphs, Bull. Int. Math. Virtual Inst., 5, pp. 57–64.
  • Mahde, S. S. and Mathad, V., (2016), Some results on the edge hub-integrity of graphs, Asia Pacific Journal of Mathematics, 3(2), pp. 173–185.
  • Mahde, S. S. and Mathad, V., (2018), Hub-integrity of line graph, Electron. J. Math. Anal. Appl., 6, pp. 255–265.
  • Mathad, V., Sahal, A. M. and Kiran S., (2014), The total hub number of graphs, Bull. Int. Math. Virtual Inst., 4, pp. 61–67.
  • Walsh, M., (2006), The hub number of a graph, Int. J. Mathematics and Computer Science, 1, pp. 117–124.

ON HUBTIC AND RESTRAINED HUBTIC OF A GRAPH

Yıl 2019, Cilt: 9 Sayı: 4, 930 - 935, 01.12.2019

Öz

In this article, the hubtic number of the join and corona of two connected graphs is computed. The restrained hubtic number r G of a graph G is the maximum number such that we can partition V G into pairwise disjoint restrained hub sets. We compute the restrained hubtic number of some standard graphs. Some bounds for r G are obtained.

Kaynakça

  • Cockayne, E. J. and Hedetniemi, S. T., (1977), Towards a theory of domination in graphs, Networks, 7, pp. 247–261.
  • Cuaresma, E. C. Jr. and Paluga, R. N., (2015), On the hub number of some graphs, Annals of Studies in Science and Humanities, 1(1), pp. 17–24.
  • Frucht, R. and Harary, F., (1970), On the corona of two graphs, Aequat Math., 4, pp. 322–325.
  • Harary, F., (1969), Graph Theory. Addison Wesley, Reading Mass.
  • Haynes, T. W., Hedetniemi, S. T. and Slater, P. J., (1998), Fundamentals of Domination in Graphs, Marcel Dekker, Inc.
  • Khalaf, S. I., Mathad, V. and Mahde, S. S., (2018), Hubtic number in graphs, Opuscula Math., 38(6), pp. 841–847.
  • Khalaf, S. I., Mathad, V. and Mahde, S. S., (2018), Edge hubtic number in graphs, Int. J. Math. Combin., 3, pp. 141–146.
  • Khalaf, S. I. and Mathad, V., (2019), Restrained hub number in graphs, Bull. Int. Math. Virtual Inst., 9, pp. 103–109.
  • Mahde, S. S., Mathad, V. and Sahal, A. M., (2015), Hub-integrity of graphs, Bull. Int. Math. Virtual Inst., 5, pp. 57–64.
  • Mahde, S. S. and Mathad, V., (2016), Some results on the edge hub-integrity of graphs, Asia Pacific Journal of Mathematics, 3(2), pp. 173–185.
  • Mahde, S. S. and Mathad, V., (2018), Hub-integrity of line graph, Electron. J. Math. Anal. Appl., 6, pp. 255–265.
  • Mathad, V., Sahal, A. M. and Kiran S., (2014), The total hub number of graphs, Bull. Int. Math. Virtual Inst., 4, pp. 61–67.
  • Walsh, M., (2006), The hub number of a graph, Int. J. Mathematics and Computer Science, 1, pp. 117–124.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

S. I. Khalaf Bu kişi benim

V. Mathad Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 4

Kaynak Göster