BibTex RIS Kaynak Göster

MUTANT FUZZY SETS

Yıl 2019, Cilt: 9 Sayı: 2, 257 - 266, 01.06.2019

Öz

In this paper, the notion of mutant fuzzy sets that by adhering to the classical sense in any semigroups has been introduced and its some of structural properties have been studied. In addition to this, the concept of t-norm based mutation for fuzzy sets on any crisp set has been given, and some of results have been investigated.

Kaynakça

  • Zadeh, L. A., (1965), Fuzzy sets, Inform. Control, 8, pp. 338–353.
  • Rosenfeld, A., (1971), Fuzzy groups, J. Math. Anal. Appl., 35, pp. 512–517.
  • Mullin, A. A., (1961), Properties of mutants, Bull. Amer. Math. Soc., 67, pp. 82.
  • Mullin, A. A., (1962), On mutant sets, Bull. Math. Biol., 24, pp. 209–215.
  • Mullin, A. A., (1962), Some theorems on the structure of mutant sets and their applications to group
  • and ring theory, Notre Dame J. Form. Log., 3 (3), pp. 148–151.
  • Iseki, K., (1962), On (m, n)−mutant sets in semigroups, Proc. Japan Acad., 38 (6), pp. 269–270.
  • Iseki, K., (1962), On mutant sets in semigroup, Proc. Japan Acad., 38 (8), pp. 478–479.
  • Kim, J. B., (1969), Mutants in semigroups, Czech. Math. Jour., 19, pp. 86–90.
  • Mordeson, J. N., Malik, D.S. and Kuroki N., (2003), Fuzzy semigroups, Springer-Verlag, pp. 303.
  • Mordeson, J. N., Bhutani, K. R. and Rosenfeld, A., (2005), Fuzzy Group Theory, Springer-Verlag, pp. 300.
  • Howie, J. M., (1995), Fundamentals of Semigroup Theory, Oxford University Press Inc., pp. 364.
  • Zimmermann, H. J., (1996), Fuzzy Set Theory and Its Applications 3rd Ed., Kluwer Academic Pub., pp. 435.
  • Klement, E. P., Mesiar, R. and Pap, E., (2000), Triangular Norms, Springer, pp. 385.
  • Bandemer, H. and Gottwald, S., (1995), Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications, Wiley and Sons Ltd., pp. 239.
  • Liu, W. J., (1982), Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8, pp. 133– 139.
  • Zahedi, M. M., (1991), A characterization of L-fuzzy prime ideals, Fuzzy Sets and Systems, 44, pp. 147–160.
Yıl 2019, Cilt: 9 Sayı: 2, 257 - 266, 01.06.2019

Öz

Kaynakça

  • Zadeh, L. A., (1965), Fuzzy sets, Inform. Control, 8, pp. 338–353.
  • Rosenfeld, A., (1971), Fuzzy groups, J. Math. Anal. Appl., 35, pp. 512–517.
  • Mullin, A. A., (1961), Properties of mutants, Bull. Amer. Math. Soc., 67, pp. 82.
  • Mullin, A. A., (1962), On mutant sets, Bull. Math. Biol., 24, pp. 209–215.
  • Mullin, A. A., (1962), Some theorems on the structure of mutant sets and their applications to group
  • and ring theory, Notre Dame J. Form. Log., 3 (3), pp. 148–151.
  • Iseki, K., (1962), On (m, n)−mutant sets in semigroups, Proc. Japan Acad., 38 (6), pp. 269–270.
  • Iseki, K., (1962), On mutant sets in semigroup, Proc. Japan Acad., 38 (8), pp. 478–479.
  • Kim, J. B., (1969), Mutants in semigroups, Czech. Math. Jour., 19, pp. 86–90.
  • Mordeson, J. N., Malik, D.S. and Kuroki N., (2003), Fuzzy semigroups, Springer-Verlag, pp. 303.
  • Mordeson, J. N., Bhutani, K. R. and Rosenfeld, A., (2005), Fuzzy Group Theory, Springer-Verlag, pp. 300.
  • Howie, J. M., (1995), Fundamentals of Semigroup Theory, Oxford University Press Inc., pp. 364.
  • Zimmermann, H. J., (1996), Fuzzy Set Theory and Its Applications 3rd Ed., Kluwer Academic Pub., pp. 435.
  • Klement, E. P., Mesiar, R. and Pap, E., (2000), Triangular Norms, Springer, pp. 385.
  • Bandemer, H. and Gottwald, S., (1995), Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications, Wiley and Sons Ltd., pp. 239.
  • Liu, W. J., (1982), Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8, pp. 133– 139.
  • Zahedi, M. M., (1991), A characterization of L-fuzzy prime ideals, Fuzzy Sets and Systems, 44, pp. 147–160.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

M. B. Kandemir Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 2

Kaynak Göster