Let X be a real Banach space and let G be a closed subset of X. The set G is called coproximinal in X if for each x ∈ X, there exists y0 ∈ G such that ky − y0k ≤ kx − yk , for all y ∈ G. In this paper, we study coproximinality of L ∞ µ, G in L ∞ µ, X , when G is either separable or reflexive coproximinal subspace of X.
Best Coapproximation coproximinal set essentially bounded functions
Birincil Dil | İngilizce |
---|---|
Bölüm | Research Article |
Yazarlar | |
Yayımlanma Tarihi | 1 Aralık 2018 |
Yayımlandığı Sayı | Yıl 2018 Cilt: 8 Sayı: 2 |