BibTex RIS Kaynak Göster

COMPUTING SANSKRUTI INDEX OF CERTAIN NANOTUBES

Yıl 2018, Cilt: 8 Sayı: 2, 477 - 482, 01.12.2018

Öz

Recently, Hosamani [8], has studied a novel topological index, namely the Sanskruti index S G of a molecular graph G. The Sanskruti index S G shows good correlation with entropy of octane isomers. In this paper we compute the Sanskruti index S G of NHPX[m; n] and TUC4[m; n] nanotubes.

Kaynakça

  • [1] Bahramia,A and Yazdani,J , (2008), Padmakar-Ivan Index of H-Phenylinic Nanotubes and Nanotore, Digest Journal of Nanomaterials and Biostructures , 3 ,pp.265-267.
  • [2] Diudea.V.M, Gutman.I and J. Lorentz, (2001), Molecular Topology, Nova, Huntington.
  • [3] Gutman, I. and Trinajstic, N., (1972), Graph theory and molecular orbital. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, pp.535-538.
  • [4] Gutman, I., (2013), Degree-based topological indices, Croat. Chem. Acta, 86, pp.251-361.
  • [5] Harary, F., (1969), Graph theory, Addison-Wesely, Reading mass.
  • [6] Hayat.S and Imarn.M, (2015), On Degree Based Topological Indices of Certain Nanotubes, Journal of Computational and Theoretical Nanoscience , 12, pp.1-7.
  • [7] Hosamani, S.M and Gutman,I., (2014), Zagreb indices of transformation graphs and total transformation graphs, Appl.Math.Comput. 247, pp.1156-1160.
  • [8] Hosamani, S.M., (2016), Computing Sanskrit index of certain nanostructures, J. Appl. Math. Comput.pp.1-9.
  • [9] Randic,M., (1975), On Characterization of Molecular Branching, J. Am. Chem. Soc., 97(23), pp.6609- 6615.
  • [10] Shegehalli, V.S., and Kanabur, R., (2016), Computation of New Degree-Based Topological Indices of Graphene, Journal of Mathematics, pp.1-6.
  • [11] Shegehalli, V.S., and Kanabur, R., (2016), Computing Degree-Based Topological Indices of Polyhex Nanotubes, Journal of Mathematical Nanoscience, 6(1-2), pp.59- 68.
  • [12] Shegehalli, V.S., and Kanabur, R., (2016), New Version of Degree-Based Topological Indices of Certain nanotube, Journal of Mathematical Nano science, 6(1-2), pp.29-39.
  • [13] Todeschini, R., and Consonni,V., (2000), Handbook of Molecular Descriptors, Wiley-VCH, Weinheim.
  • [14] Trinajstic,N., (1992), Chemical Graph theory, CRC Press, Boca Raton.
Yıl 2018, Cilt: 8 Sayı: 2, 477 - 482, 01.12.2018

Öz

Kaynakça

  • [1] Bahramia,A and Yazdani,J , (2008), Padmakar-Ivan Index of H-Phenylinic Nanotubes and Nanotore, Digest Journal of Nanomaterials and Biostructures , 3 ,pp.265-267.
  • [2] Diudea.V.M, Gutman.I and J. Lorentz, (2001), Molecular Topology, Nova, Huntington.
  • [3] Gutman, I. and Trinajstic, N., (1972), Graph theory and molecular orbital. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, pp.535-538.
  • [4] Gutman, I., (2013), Degree-based topological indices, Croat. Chem. Acta, 86, pp.251-361.
  • [5] Harary, F., (1969), Graph theory, Addison-Wesely, Reading mass.
  • [6] Hayat.S and Imarn.M, (2015), On Degree Based Topological Indices of Certain Nanotubes, Journal of Computational and Theoretical Nanoscience , 12, pp.1-7.
  • [7] Hosamani, S.M and Gutman,I., (2014), Zagreb indices of transformation graphs and total transformation graphs, Appl.Math.Comput. 247, pp.1156-1160.
  • [8] Hosamani, S.M., (2016), Computing Sanskrit index of certain nanostructures, J. Appl. Math. Comput.pp.1-9.
  • [9] Randic,M., (1975), On Characterization of Molecular Branching, J. Am. Chem. Soc., 97(23), pp.6609- 6615.
  • [10] Shegehalli, V.S., and Kanabur, R., (2016), Computation of New Degree-Based Topological Indices of Graphene, Journal of Mathematics, pp.1-6.
  • [11] Shegehalli, V.S., and Kanabur, R., (2016), Computing Degree-Based Topological Indices of Polyhex Nanotubes, Journal of Mathematical Nanoscience, 6(1-2), pp.59- 68.
  • [12] Shegehalli, V.S., and Kanabur, R., (2016), New Version of Degree-Based Topological Indices of Certain nanotube, Journal of Mathematical Nano science, 6(1-2), pp.29-39.
  • [13] Todeschini, R., and Consonni,V., (2000), Handbook of Molecular Descriptors, Wiley-VCH, Weinheim.
  • [14] Trinajstic,N., (1992), Chemical Graph theory, CRC Press, Boca Raton.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

V. Shigehalli Bu kişi benim

R. Kanabur Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 2

Kaynak Göster