BibTex RIS Kaynak Göster

SINGLE-VALUED NEUTROSOPHIC HYPERGRAPHS

Yıl 2018, Cilt: 8 Sayı: 1, 122 - 135, 01.06.2018

Öz

We introduce certain concepts, including single-valued neutrosophic hyper-graph, line graph of single-valued neutrosophic hypergraph, dual single-valued neutro- sophic hypergraph and transversal single-valued neutrosophic hypergraph.

Kaynakça

  • Akram,M. and Dudek,W.A., (2013), Intuitionistic fuzzy hypergraphs with applications, Information Sciences, 218, pp.182-193.
  • Akram,M. and Alshehri,N.O., (2015), Tempered interval-valued fuzzy hypergraphs, University po- litehnica of bucharest scientific bulletin-series a-applied mathematics and physics, 77, pp.39-48.
  • Atanassov,K.T., (1983), Intuitionistic fuzzy sets, VII ITKR’s Session, Deposed in Central for Science
  • Technical Library of Bulgarian Academy of Sciences, 1697/84, Sofia, Bulgaria.
  • Broumi,S., Talea,M., Bakali,A., and Smarandache,F., (2016), Single-valued neutrosophic graphs, Jour- nal of New theory, 10, pp.86-101.
  • Chen,S.M., (1997), Interval-valued fuzzy hypergraph and fuzzy partition, IEEE Transactions on Sys- tems, Man, and Cybernetics, Part B (Cybernetics), 27(4), pp.725-733.
  • Dhavaseelan,R., Vikramaprasad,R., and Krishnaraj,V., (2015), Certain types of neutrosophic graphs, Int Jr. Math. Sci. App., 5, pp.333-339.
  • Kauffmann,A., (1973), Introduction a la theorie des sous-ensembles flous, 1, Masson.
  • Lee-kwang,H. and Lee,L.M., (1995), Fuzzy hypergraph and fuzzy partition, IEEE Trans. Syst. Man Cybernet., 25, pp.196-201.
  • Maji,P.K., (2012), A neutrosophic soft set approach to a decision making problem. Annals of Fuzzy
  • Mathematics and Informatics, 3, pp.313-319. Majumdar,P. and Samanta,S.K., (2014), On similarity and entropy of neutrosophic sets, Journal of
  • Intelligent and Fuzzy Systems, 26, pp.1245-1252.
  • Mordeson,J.N. and Nair,P.S., (2001), Fuzzy graphs and fuzzy hypergraphs, Physica Verlag, Heidelberg.
  • Rosenfeld,A., (1975), Fuzzy graphs, fuzzy Sets and their Applications to Cognitive and Decision
  • Processes (Proceeding of U.S.-Japan Sem., University of California, Berkeley, Calif, 1974) (L. A. Zadeh, K. S. Fu, and M. Shimura, eds.), Academic Press, New York, pp.77-95.
  • Smarandache,F., (1998), Neutrosophy. Neutrosophic Probability, Set, and Logic, Amer. Res. Press, Rehoboth, USA, 105.
  • Smarandache,F., (2005), Neutrosophic set, a generalization of the Intuitionistic Fuzzy Sets, Interna- tional Journal of Pure and Applied Mathematics, 24, pp.287-297.
  • Wang,H., Smarandache,F., Zhang,Y., and Sunderraman,R., (2010), Single-valued neutrosophic sets
  • Multispace and Multistructure, 4, pp.410-413. Ye,J. (2014), Similarity measures between interval neutrosophic sets and their applications in multi- criteria decision-making. Journal of Intelligent and Fuzzy Systems, 26, pp.165-172.
  • Zadeh,L.A., (1965), Fuzzy sets, Information and Control, 8, pp.338-353.
Yıl 2018, Cilt: 8 Sayı: 1, 122 - 135, 01.06.2018

Öz

Kaynakça

  • Akram,M. and Dudek,W.A., (2013), Intuitionistic fuzzy hypergraphs with applications, Information Sciences, 218, pp.182-193.
  • Akram,M. and Alshehri,N.O., (2015), Tempered interval-valued fuzzy hypergraphs, University po- litehnica of bucharest scientific bulletin-series a-applied mathematics and physics, 77, pp.39-48.
  • Atanassov,K.T., (1983), Intuitionistic fuzzy sets, VII ITKR’s Session, Deposed in Central for Science
  • Technical Library of Bulgarian Academy of Sciences, 1697/84, Sofia, Bulgaria.
  • Broumi,S., Talea,M., Bakali,A., and Smarandache,F., (2016), Single-valued neutrosophic graphs, Jour- nal of New theory, 10, pp.86-101.
  • Chen,S.M., (1997), Interval-valued fuzzy hypergraph and fuzzy partition, IEEE Transactions on Sys- tems, Man, and Cybernetics, Part B (Cybernetics), 27(4), pp.725-733.
  • Dhavaseelan,R., Vikramaprasad,R., and Krishnaraj,V., (2015), Certain types of neutrosophic graphs, Int Jr. Math. Sci. App., 5, pp.333-339.
  • Kauffmann,A., (1973), Introduction a la theorie des sous-ensembles flous, 1, Masson.
  • Lee-kwang,H. and Lee,L.M., (1995), Fuzzy hypergraph and fuzzy partition, IEEE Trans. Syst. Man Cybernet., 25, pp.196-201.
  • Maji,P.K., (2012), A neutrosophic soft set approach to a decision making problem. Annals of Fuzzy
  • Mathematics and Informatics, 3, pp.313-319. Majumdar,P. and Samanta,S.K., (2014), On similarity and entropy of neutrosophic sets, Journal of
  • Intelligent and Fuzzy Systems, 26, pp.1245-1252.
  • Mordeson,J.N. and Nair,P.S., (2001), Fuzzy graphs and fuzzy hypergraphs, Physica Verlag, Heidelberg.
  • Rosenfeld,A., (1975), Fuzzy graphs, fuzzy Sets and their Applications to Cognitive and Decision
  • Processes (Proceeding of U.S.-Japan Sem., University of California, Berkeley, Calif, 1974) (L. A. Zadeh, K. S. Fu, and M. Shimura, eds.), Academic Press, New York, pp.77-95.
  • Smarandache,F., (1998), Neutrosophy. Neutrosophic Probability, Set, and Logic, Amer. Res. Press, Rehoboth, USA, 105.
  • Smarandache,F., (2005), Neutrosophic set, a generalization of the Intuitionistic Fuzzy Sets, Interna- tional Journal of Pure and Applied Mathematics, 24, pp.287-297.
  • Wang,H., Smarandache,F., Zhang,Y., and Sunderraman,R., (2010), Single-valued neutrosophic sets
  • Multispace and Multistructure, 4, pp.410-413. Ye,J. (2014), Similarity measures between interval neutrosophic sets and their applications in multi- criteria decision-making. Journal of Intelligent and Fuzzy Systems, 26, pp.165-172.
  • Zadeh,L.A., (1965), Fuzzy sets, Information and Control, 8, pp.338-353.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

M. Akram Bu kişi benim

S. Shahzadi Bu kişi benim

A.b. Saeid Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 1

Kaynak Göster