BibTex RIS Kaynak Göster

ADAPTIVE METHODS FOR SOLVING OPERATOR EQUATIONS BY USING FRAMES OF SUBSPACES

Yıl 2017, Cilt: 7 Sayı: 1, 142 - 153, 01.06.2017

Öz

In this paper, using a frame of subspaces we transform an operator equation to an equivalent l2-problem. Then, we propose an adaptive algorithm to solve the problem and investigate the optimality and complexity properties of the algorithm.

Kaynakça

  • Casazza,P.G., (2000), The art of frame theory, Taiwaness J. Math., 4, pp.129-201.
  • Casazza,P.G. and Kutyniok, G., (2004), Frames of subspaces, Wavelets, Frames and Operator Theory, Contemp. Math. , Amer. Math. Soc, 345, pp.87-113.
  • Christensen,O., (2003), An Introduction to Frames and Riesz Bases, Birkhauser, Boston.
  • Cohen,A., Dahmen,W., and DeVore,R., (2001), Adaptive wavelet methods for elliptic operator equa- tions: convergence rates, Math. of comp., 70, pp.27-75.
  • Cohen,A., Dahmen,W., and DeVore,R., (2002), Adaptive wavelets methods II-beyond the elliptic case, Found. of Comp. Math., 2, pp.203-245.
  • Dahlke,S., Dahmen,W., and Urban,K., (2002), Adaptive wavelet methods for saddle point problems- optimal convergence rates, SIAM J. Numer. Anal., 40, pp.1230–1262.
  • Dahlke,S., Fornasier,M., and Raasch,T., (2007), Adaptive frame methods for elliptic operator equa- tions, Advances in comp. Math., 27, pp.27-63.
  • Dahlke,S., Raasch,T., and Werner,M., (2007), Adaptive frame methods for elliptic operator equations: the steepest descent approach, IMA J. Numer. Anal., 27, pp.717-740.
  • DeVore,R., (1998), Nonlinear approximation, Acta Numer., 7, pp. 51-150.
Yıl 2017, Cilt: 7 Sayı: 1, 142 - 153, 01.06.2017

Öz

Kaynakça

  • Casazza,P.G., (2000), The art of frame theory, Taiwaness J. Math., 4, pp.129-201.
  • Casazza,P.G. and Kutyniok, G., (2004), Frames of subspaces, Wavelets, Frames and Operator Theory, Contemp. Math. , Amer. Math. Soc, 345, pp.87-113.
  • Christensen,O., (2003), An Introduction to Frames and Riesz Bases, Birkhauser, Boston.
  • Cohen,A., Dahmen,W., and DeVore,R., (2001), Adaptive wavelet methods for elliptic operator equa- tions: convergence rates, Math. of comp., 70, pp.27-75.
  • Cohen,A., Dahmen,W., and DeVore,R., (2002), Adaptive wavelets methods II-beyond the elliptic case, Found. of Comp. Math., 2, pp.203-245.
  • Dahlke,S., Dahmen,W., and Urban,K., (2002), Adaptive wavelet methods for saddle point problems- optimal convergence rates, SIAM J. Numer. Anal., 40, pp.1230–1262.
  • Dahlke,S., Fornasier,M., and Raasch,T., (2007), Adaptive frame methods for elliptic operator equa- tions, Advances in comp. Math., 27, pp.27-63.
  • Dahlke,S., Raasch,T., and Werner,M., (2007), Adaptive frame methods for elliptic operator equations: the steepest descent approach, IMA J. Numer. Anal., 27, pp.717-740.
  • DeVore,R., (1998), Nonlinear approximation, Acta Numer., 7, pp. 51-150.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

H. Jamali Bu kişi benim

K.h. Shokri Ternoniz Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 1

Kaynak Göster