BibTex RIS Kaynak Göster

On Generalized Phi-Recurrent Kenmotsu Manifolds

Yıl 2015, Cilt: 5 Sayı: 1, 1 - 9, 01.06.2015

Öz

The aim of the present paper is to study the properties of generalized ϕ−recurrent and concircular ϕ−recurrent Kenmotsu manifolds

Kaynakça

  • Sasaki, S., (1965, 1967, 1968), Almost contact manifolds, I, II, III, A Lecture note, Tohoku University.
  • Takahashi, T., (1977), Sasakian ϕ−symmetric spaces, Tohoku Math. J., 29, pp. 91-113.
  • De, U. C. and Pathak, G., (2004), On 3−dimensional Kenmotsu manifolds, Indian J. pure Appl. Math., 35, pp. 159-165.
  • Kenmotsu, K., (1972), A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, pp. 103.
  • De, U. C. and Guha, N., (1991) , On generalized recurrent manifolds, Proceedings of the Mathematical Society, 7, pp. 7-11.
  • Chen, B. Y., (1973), Geometry of submanifolds, M. Dekker Inc., New York.
  • Yano, K., (1944), On the torseforming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20, pp. 340-345.
  • Chaubey, S. K., (2013), On generalized ϕ−recurrent trans-Sasakian manifolds, (to appear).
  • Patil, D. A., Prakasha, D. G. and Bagewadi, C. S., (2009), On generalized ϕ−recurrent Sasakian manifolds, Bull. of Math. Anal. and Appl., 1 (3), pp. 42-48.
  • Jaiswal, J. P. and Ojha, R. H., (2009) , On generalized ϕ−recurrent LP-Sasakian manifolds, Kyung- pook Math. J., 49, pp. 779-788.
  • Venkatesha and Bagewadi, C. S., (2005), On 3−dimensional trans-Sasakian manifolds, AMSE, 42(5), pp. 63-73.
  • Kobayashi, K. and Nomizu, K., (1963), Foundations of Differential Geometry, I, II, Wiley-Interscience, New York.
  • Sinha, B. B. and Srivastava, A. K., (1991), Curvatures on Kenmotsu manifold, Indian J. Pure Appl. Math., 22, (1), pp. 23-28.
  • Jun, J. B., De, U. C. and Pathak, G., (2005), On Kenmotsu manifolds, J. Korean Math. Soc., 42, pp. 445.
  • De, U. C., Yildiz, A. and Yaliniz, Funda, (2008), On ϕ−recurrent Kenmotsu manifolds, Turk J. Math., , pp. 1-12.
  • Sasaki, S. and Hatakeyama, Y., (1961), On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J., 13, pp. 281-294.
  • Chaubey, S. K. and Ojha, R. H., (2010), On m-projective curvature tensor of a Kenmotsu manifold, Diff. Geom. Dyn. Sys., 12, pp. 52-60.
  • De, U. C., (2008), On ϕ−symmetric Kenmotsu manifolds, International Electronic J. of Geom., 1 (1), pp. 33-38.
  • Cihan, ¨O . and De, U. C., (2006), On the quasi-conformal curvature tensor of a Kenmotsu manifolds
  • Mathematica Pannonica, 17/2, pp. 221-228. Basari, A. and Murathan, C., (2008), On generalized ϕ−recurrent Kenmotsu manifolds, Fen Derg. (1), pp. 91-97.
  • De, U. C. and Guha, N., (1991), On generalized recurrent manifolds, J. Nat. Acad. Math. India, 9, pp. 85-92.
  • Cihan, ¨O ., (2007), On generalized recurrent Kenmotsu manifolds, Word Applied Sci. J., 2(1), pp. 33.
Yıl 2015, Cilt: 5 Sayı: 1, 1 - 9, 01.06.2015

Öz

Kaynakça

  • Sasaki, S., (1965, 1967, 1968), Almost contact manifolds, I, II, III, A Lecture note, Tohoku University.
  • Takahashi, T., (1977), Sasakian ϕ−symmetric spaces, Tohoku Math. J., 29, pp. 91-113.
  • De, U. C. and Pathak, G., (2004), On 3−dimensional Kenmotsu manifolds, Indian J. pure Appl. Math., 35, pp. 159-165.
  • Kenmotsu, K., (1972), A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, pp. 103.
  • De, U. C. and Guha, N., (1991) , On generalized recurrent manifolds, Proceedings of the Mathematical Society, 7, pp. 7-11.
  • Chen, B. Y., (1973), Geometry of submanifolds, M. Dekker Inc., New York.
  • Yano, K., (1944), On the torseforming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20, pp. 340-345.
  • Chaubey, S. K., (2013), On generalized ϕ−recurrent trans-Sasakian manifolds, (to appear).
  • Patil, D. A., Prakasha, D. G. and Bagewadi, C. S., (2009), On generalized ϕ−recurrent Sasakian manifolds, Bull. of Math. Anal. and Appl., 1 (3), pp. 42-48.
  • Jaiswal, J. P. and Ojha, R. H., (2009) , On generalized ϕ−recurrent LP-Sasakian manifolds, Kyung- pook Math. J., 49, pp. 779-788.
  • Venkatesha and Bagewadi, C. S., (2005), On 3−dimensional trans-Sasakian manifolds, AMSE, 42(5), pp. 63-73.
  • Kobayashi, K. and Nomizu, K., (1963), Foundations of Differential Geometry, I, II, Wiley-Interscience, New York.
  • Sinha, B. B. and Srivastava, A. K., (1991), Curvatures on Kenmotsu manifold, Indian J. Pure Appl. Math., 22, (1), pp. 23-28.
  • Jun, J. B., De, U. C. and Pathak, G., (2005), On Kenmotsu manifolds, J. Korean Math. Soc., 42, pp. 445.
  • De, U. C., Yildiz, A. and Yaliniz, Funda, (2008), On ϕ−recurrent Kenmotsu manifolds, Turk J. Math., , pp. 1-12.
  • Sasaki, S. and Hatakeyama, Y., (1961), On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J., 13, pp. 281-294.
  • Chaubey, S. K. and Ojha, R. H., (2010), On m-projective curvature tensor of a Kenmotsu manifold, Diff. Geom. Dyn. Sys., 12, pp. 52-60.
  • De, U. C., (2008), On ϕ−symmetric Kenmotsu manifolds, International Electronic J. of Geom., 1 (1), pp. 33-38.
  • Cihan, ¨O . and De, U. C., (2006), On the quasi-conformal curvature tensor of a Kenmotsu manifolds
  • Mathematica Pannonica, 17/2, pp. 221-228. Basari, A. and Murathan, C., (2008), On generalized ϕ−recurrent Kenmotsu manifolds, Fen Derg. (1), pp. 91-97.
  • De, U. C. and Guha, N., (1991), On generalized recurrent manifolds, J. Nat. Acad. Math. India, 9, pp. 85-92.
  • Cihan, ¨O ., (2007), On generalized recurrent Kenmotsu manifolds, Word Applied Sci. J., 2(1), pp. 33.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

S. K. Chaubey Bu kişi benim

C. S. Prasad Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 5 Sayı: 1

Kaynak Göster