BibTex RIS Kaynak Göster

ON TRIGONOMETRIC APPROXIMATION IN THE SPACE Lp x

Yıl 2014, Cilt: 4 Sayı: 2, 147 - 154, 01.12.2014

Öz

In this paper we have introduced two new class of numerical sequences, named almost monotone decreasing increasing upper second mean sequences. Moreover, we have presented some results on trigonometric approximation of functions by means of a special transformation related to the partial sums of a Fourier series.

Kaynakça

  • Hardy, G. H., Divergent series, Oxford University Press, 1949.
  • Chandra, P., (1986), Approximation by N¨orlund operators, Mat. Vesnik, 38, 263–269.
  • Chandra, P., (1986), Functions of classes Lpand Lip(α, p) and their Riesz means, Riv. Math. Univ. Parma., 4, 275–282.
  • Chandra, P., (1990), A note on degree of approximation by N¨orlund and Riesz operators, Mat. Vesnik, , 9–10.
  • Chandra, P., (2002), Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl., , 13–26.
  • Diening, L., (2004), Maximal function on generalized Lebesgue spaces Lp(x), Math. Inequal. Appl., Vol. 7, No. 2, 245–253.
  • Guven, A. and Israfilov, D., (2010), Trigonometric approximation in generalized Lebesgue spaces
  • Lp(x), J. Math. Inequal., Vol. 4, No. 2, 285–299. Ky, N. X., (1997), Moduli of mean smoothness and approximation withAp-weights, Ann. Univ. Sci. Budap., Vol. 40,37–48.
  • Leindler, L., (2005), Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl., Vol. , 129–136.
  • Mohapatra,R. N. and Russell, D. C., (1983), Some direct and inverse theorems in approximation of functions, J. Aust. Math. Soc. (Ser. A), 34, 143–154.
  • Quade, E. S., (1937), Trigonometric approximation in the mean, Duke Math. J., 3, 529–542.
  • Sharapudinov, I. I., (2007), Some problems in approximation theory in the space Lp(x), (Russian), Anal. Math., 33, 135–153.
  • Szal, B., (2009), Trigonometric approximation by N¨orlund type means in Lp-norm, Comment. Math.
  • Univ. Carolin., Vol. 50 , No. 4, 575–589.
Yıl 2014, Cilt: 4 Sayı: 2, 147 - 154, 01.12.2014

Öz

Kaynakça

  • Hardy, G. H., Divergent series, Oxford University Press, 1949.
  • Chandra, P., (1986), Approximation by N¨orlund operators, Mat. Vesnik, 38, 263–269.
  • Chandra, P., (1986), Functions of classes Lpand Lip(α, p) and their Riesz means, Riv. Math. Univ. Parma., 4, 275–282.
  • Chandra, P., (1990), A note on degree of approximation by N¨orlund and Riesz operators, Mat. Vesnik, , 9–10.
  • Chandra, P., (2002), Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl., , 13–26.
  • Diening, L., (2004), Maximal function on generalized Lebesgue spaces Lp(x), Math. Inequal. Appl., Vol. 7, No. 2, 245–253.
  • Guven, A. and Israfilov, D., (2010), Trigonometric approximation in generalized Lebesgue spaces
  • Lp(x), J. Math. Inequal., Vol. 4, No. 2, 285–299. Ky, N. X., (1997), Moduli of mean smoothness and approximation withAp-weights, Ann. Univ. Sci. Budap., Vol. 40,37–48.
  • Leindler, L., (2005), Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl., Vol. , 129–136.
  • Mohapatra,R. N. and Russell, D. C., (1983), Some direct and inverse theorems in approximation of functions, J. Aust. Math. Soc. (Ser. A), 34, 143–154.
  • Quade, E. S., (1937), Trigonometric approximation in the mean, Duke Math. J., 3, 529–542.
  • Sharapudinov, I. I., (2007), Some problems in approximation theory in the space Lp(x), (Russian), Anal. Math., 33, 135–153.
  • Szal, B., (2009), Trigonometric approximation by N¨orlund type means in Lp-norm, Comment. Math.
  • Univ. Carolin., Vol. 50 , No. 4, 575–589.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Xhevat Z. Krasnigi Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 4 Sayı: 2

Kaynak Göster