BibTex RIS Kaynak Göster

ON THE SOLUTIONS OF FUZZY FRACTIONAL DIFFERENTIAL EQUATION

Yıl 2014, Cilt: 4 Sayı: 1, 98 - 103, 01.06.2014

Öz

In this paper the exact and the approximate solutions of fuzzy fractional differential equation, in the sense of Caputo Hukuhara differentiability, with a fuzzy condition are constructed by using the fuzzy Laplace transform. The obtained solutions are expressed in the form of the fuzzy Mittag-Leffler function. The presented procedure is visualized and the graphs of the obtained approximate solutions are drawn by using the GeoGebra package.

Kaynakça

  • Bede1 B., Rudas I.,Bencsik A., (2007), First order linear fuzzy differential equa- tions under generalized differentiability, Journal Information Sciences: an International Journal archive V. 177 I. 7, pp 1648- 1662.
  • Arshad S, Lupulescu V., (2011), Fractional differential equation with the fuzzy initial condition, Electronic Journal of Differential Equations, Vol. 2011 No. 34, pp. 1-8.
  • Caputo, M., (2008), Linear models of dissipation whose Q is almost frequency independent- II, Geo- phys. J. Royal Astronom. Soc., 13, No 5 (1967), 529-539.
  • Kadaka U., Basar,F., (2012), Power series of fuzzy numbers with real or fuzzy coefficients, Filomat 26:3, 519528.
  • V. Kiryakova, (2011), Fractional order differential and integral equations with Erd´elyi-Kober opera- tors: Explicit solutions by means of the transmutation method, American Institute of Physics - Conf. Proc. # 1410 (Proc. 37th Intern. Conf. AMEE’ 2011), 247-258; doi: 10.1063/1.3664376.
  • V. Kiryakova, (2012), Some operational tools for solving fractional and higher integer order differential equations: A survey on their mutual relations, American Institute of Physics - Conf. Proc. # 1497 (Proc. 38th Intern. Conf. AMEE’ 2012), 273-289; doi: 10.1063/1.4766795.
  • Mainardi, F., Yu. Luchko, Pagnini, G., (2001), The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and its Application, 4,2., 153-192.
  • Palash D., Hrishikesh B., Tazid A. (2011), Fuzzy Arithmetic with and without using -cut method: A Comparative Study, International Journal of Latest Trends in Computing (E-ISSN: 2045-5364) 99 Volume 2, Issue 1.
  • Salahshour S., Allahviranloo T., Abbasbandy S., (2012), Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun Nonlinear Sci Numer Simulat 17, 13721381.
  • Takaˇci, Dj., Takaˇci, A., (2007), On the approximate solution of mathematical model of a viscoelastic bar, Nonlinear Analysis, 67, 1560-1569.
  • Takaˇci, Dj., Takaˇci, A., ˇStrboja, M., (2010) On the character of operational solutions of the time- fractional diffusion equation, Nonlinear Analysis: 72, 5, 2367-2374.
  • J. Tenreiro Machado, V. Kiryakova, (2011), F. Mainardi, Recent history of fractional cal- culus, Communications in Nonlinear Sci. and Numerical Simulations, 16, No 3, 1140-1153; doi:10.1016/j.cnsns.2010.05.027.
  • Zadeh, L. A.,Fuzzy Sets, (1965), Information and Control, 8, 338-353.
Yıl 2014, Cilt: 4 Sayı: 1, 98 - 103, 01.06.2014

Öz

Kaynakça

  • Bede1 B., Rudas I.,Bencsik A., (2007), First order linear fuzzy differential equa- tions under generalized differentiability, Journal Information Sciences: an International Journal archive V. 177 I. 7, pp 1648- 1662.
  • Arshad S, Lupulescu V., (2011), Fractional differential equation with the fuzzy initial condition, Electronic Journal of Differential Equations, Vol. 2011 No. 34, pp. 1-8.
  • Caputo, M., (2008), Linear models of dissipation whose Q is almost frequency independent- II, Geo- phys. J. Royal Astronom. Soc., 13, No 5 (1967), 529-539.
  • Kadaka U., Basar,F., (2012), Power series of fuzzy numbers with real or fuzzy coefficients, Filomat 26:3, 519528.
  • V. Kiryakova, (2011), Fractional order differential and integral equations with Erd´elyi-Kober opera- tors: Explicit solutions by means of the transmutation method, American Institute of Physics - Conf. Proc. # 1410 (Proc. 37th Intern. Conf. AMEE’ 2011), 247-258; doi: 10.1063/1.3664376.
  • V. Kiryakova, (2012), Some operational tools for solving fractional and higher integer order differential equations: A survey on their mutual relations, American Institute of Physics - Conf. Proc. # 1497 (Proc. 38th Intern. Conf. AMEE’ 2012), 273-289; doi: 10.1063/1.4766795.
  • Mainardi, F., Yu. Luchko, Pagnini, G., (2001), The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and its Application, 4,2., 153-192.
  • Palash D., Hrishikesh B., Tazid A. (2011), Fuzzy Arithmetic with and without using -cut method: A Comparative Study, International Journal of Latest Trends in Computing (E-ISSN: 2045-5364) 99 Volume 2, Issue 1.
  • Salahshour S., Allahviranloo T., Abbasbandy S., (2012), Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun Nonlinear Sci Numer Simulat 17, 13721381.
  • Takaˇci, Dj., Takaˇci, A., (2007), On the approximate solution of mathematical model of a viscoelastic bar, Nonlinear Analysis, 67, 1560-1569.
  • Takaˇci, Dj., Takaˇci, A., ˇStrboja, M., (2010) On the character of operational solutions of the time- fractional diffusion equation, Nonlinear Analysis: 72, 5, 2367-2374.
  • J. Tenreiro Machado, V. Kiryakova, (2011), F. Mainardi, Recent history of fractional cal- culus, Communications in Nonlinear Sci. and Numerical Simulations, 16, No 3, 1140-1153; doi:10.1016/j.cnsns.2010.05.027.
  • Zadeh, L. A.,Fuzzy Sets, (1965), Information and Control, 8, 338-353.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Djurdjica Takaci Bu kişi benim

Arpad Takaci Bu kişi benim

Aleksandar Takaci Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 4 Sayı: 1

Kaynak Göster