EDGE-ZAGREB INDICES OF GRAPHS
Yıl 2020,
Cilt: 10 Sayı: 1, 1 - 10, 01.01.2020
C. Yamaç
M. S. Oz
I. N. Cangul
Öz
The algebraic study of graph matrices is an important area of Graph The-ory giving information about the chemical and physical properties of the corresponding molecular structure. In this paper, we deal with the edge-Zagreb matrices de ned by means of Zagreb indices which are the most frequently used graph indices.
Kaynakça
- Bapat, R. B., (2014), Graphs and Matrices, Springer.
- Celik, F. and Cangul, I. N., (2017), Formulae and Recurrence Relations on Spectral Polynomials of
- Some graphs, Advanced Studies in Contemporary Mathematics, 27 (3), pp. 325-332. Das, K. C., Akgunes, N., Togan, M., Yurttas, A., Cangul, I. N. and Cevik, A. S., (2016), On the first Zagreb index and multiplicative Zagreb coindices of graphs, Analele Stiintifice ale Universitatii
- Ovidius Constanta, 24 (1), pp. 153-176. Das, K. C., Yurttas, A., Togan, M., Cangul, I. N. and Cevik, A. S., (2013), The multiplicative Zagreb indices of graph operations, Journal of Inequalities and Applications, 90.
- Gutman, I. and Trinajstic, N., (1972), Graph theory and molecular orbitals III. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17, pp. 535-538.
- Janeˇziˇc, D., Miliˇcevi´c, A., Nikoli´c, S. and Trinajsti´c, N., (2015), Graph Theoretical Matrices in Chem- istry, CRC Press, Taylor and Francis Group.
- Lokesha, V., Shetty, S. B., Ranjini, P. S. and Cangul, I. N., (2015), Computing ABC, GA, Randic and Zagreb Indices, Enlightments of Pure and Applied Mathematics (EPAM), 1 (1), pp. 17-28.
- Ranjini, P. S., Lokesha, V. and Cangul, I. N., (2011), On the Zagreb indices of the line graphs of the subdivision graphs, Appl. Math. Comput., 218, pp. 699-702.
- Ranjini, P. S., Rajan, M. A. and Lokesha, V., (2010), On Zagreb Indices of the Sub-division Graphs
- Int. J. of Math. Sci. & Eng. Appns (IJMSEA), 4, pp. 221-228. Togan, M., Yurttas, A. and Cangul, I. N., (2015), Some formulae and inequalities on several Zagreb indices of r-subdivision graphs, Enlightments of Pure and Applied Mathematics (EPAM), 1 (1), pp. 45.
- Togan, M., Yurttas, A. and Cangul, I. N., (2016), All versions of Zagreb indices and coindices of subdivision graphs of certain graph types, Advanced Studies in Contemporary Mathematics, 26 (1), pp. 227-236.
Yıl 2020,
Cilt: 10 Sayı: 1, 1 - 10, 01.01.2020
C. Yamaç
M. S. Oz
I. N. Cangul
Kaynakça
- Bapat, R. B., (2014), Graphs and Matrices, Springer.
- Celik, F. and Cangul, I. N., (2017), Formulae and Recurrence Relations on Spectral Polynomials of
- Some graphs, Advanced Studies in Contemporary Mathematics, 27 (3), pp. 325-332. Das, K. C., Akgunes, N., Togan, M., Yurttas, A., Cangul, I. N. and Cevik, A. S., (2016), On the first Zagreb index and multiplicative Zagreb coindices of graphs, Analele Stiintifice ale Universitatii
- Ovidius Constanta, 24 (1), pp. 153-176. Das, K. C., Yurttas, A., Togan, M., Cangul, I. N. and Cevik, A. S., (2013), The multiplicative Zagreb indices of graph operations, Journal of Inequalities and Applications, 90.
- Gutman, I. and Trinajstic, N., (1972), Graph theory and molecular orbitals III. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17, pp. 535-538.
- Janeˇziˇc, D., Miliˇcevi´c, A., Nikoli´c, S. and Trinajsti´c, N., (2015), Graph Theoretical Matrices in Chem- istry, CRC Press, Taylor and Francis Group.
- Lokesha, V., Shetty, S. B., Ranjini, P. S. and Cangul, I. N., (2015), Computing ABC, GA, Randic and Zagreb Indices, Enlightments of Pure and Applied Mathematics (EPAM), 1 (1), pp. 17-28.
- Ranjini, P. S., Lokesha, V. and Cangul, I. N., (2011), On the Zagreb indices of the line graphs of the subdivision graphs, Appl. Math. Comput., 218, pp. 699-702.
- Ranjini, P. S., Rajan, M. A. and Lokesha, V., (2010), On Zagreb Indices of the Sub-division Graphs
- Int. J. of Math. Sci. & Eng. Appns (IJMSEA), 4, pp. 221-228. Togan, M., Yurttas, A. and Cangul, I. N., (2015), Some formulae and inequalities on several Zagreb indices of r-subdivision graphs, Enlightments of Pure and Applied Mathematics (EPAM), 1 (1), pp. 45.
- Togan, M., Yurttas, A. and Cangul, I. N., (2016), All versions of Zagreb indices and coindices of subdivision graphs of certain graph types, Advanced Studies in Contemporary Mathematics, 26 (1), pp. 227-236.