BibTex RIS Kaynak Göster

FIXED POINT RESULTS FROM SOFT METRIC SPACES AND SOFT QUASI METRIC SPACES TO SOFT G-METRIC SPACES

Yıl 2020, Cilt: 10 Sayı: 1, 118 - 127, 01.01.2020

Öz

In this paper, soft quasi-metric spaces by means of soft elements are de-scribed. Also the presentation of soft G-metric spaces and the existing xed point results of contractive mappings de ned on this kind of spaces are examined. Especially, it is shown that the most gotten xed point theorems on this kind of spaces can be obtained directly from xed point theorems on soft metric or soft quasi-metric spaces.

Kaynakça

  • Ali, M.I., Feng,F., Liu,X., Min,W.K. and Shabir,M., (2003), On some new operations in soft set theory, Computer and Mathematics with Application, 57, (9), 1547- 1553.
  • Atanassov, K.,(1986), Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 8796.
  • Cagman, N. and Enginoglu, S.,(2010), Soft set theory and unit-int decision making, European J. Oper. Res., 207, 848-855.
  • Cetkin, V.,Aygunoglu, A. and Aygun, H.(2016), A new approach in handling soft decision making problems, J. Nonlinear Sci. Appl., 9, 231-239.
  • Das, S. and Samanta, S. K.,(2012), Soft real set, soft real number and their properties, J. Fuzzy Math., , (3), 551-576.
  • Das, S. and Samanta, S. K, (2013), On soft metric spaces, J. Fuzzy Math., 21 (3), 707-734.
  • Gau, W.L. and Buehrer, D.J.,(1993) Vague sets, IEEE Transactions on Systems, Man and Cybernetics, /2, 610614.
  • Gorzalzany, M.B.,(1987) A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems, 21, 117.
  • Guler, A. C., Yildirim, E. D. and Ozbakir, O. B.,(2016) A Fixed point theorem on soft G-metric spaces, J. Nonlinear Sci. Appl., 9, 885-894.
  • Guler, A. C.and Yildirim, E. D.,(2016), A note on soft G-metric spaces about fixed point theorems
  • Annals of Fuzzy Mathematics and Informatics, Volume 12, No. 5, 691-701. Jleli, M. and Samet, B.,(2012), Remarks on G-metric spaces and fixed point theorems, Fixed Point
  • Theory and Applications, 2012:210.
  • Maji, P.K., Roy, A.R. and Biswas,R., (2002), An application of soft sets in a decision making problem
  • Computers and Mathematics with Applications, 44, 10771083.
  • Molodtsov, D.,(1999), Soft set theory first results, Computers and Mathematics with Applications, , 1931.
  • Molodtsov,D.,(2004), The Theory of Soft Sets, URSS Publishers, Moscow, (in Russian).
  • Mustafa, Z., (2005), A new structure for generalized metric spaces-with applications to fixed point theory, PhD thesis, the University of Newcastle, Australia
  • Mustafa, Z. and Sims, B.,(2006) A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2), 289-297.
  • Pawlak, Z.,(1982), Rough sets, International Journal of Information and Computer Sciences, 11, 341
  • Shabir M. and Naz,M.,(2011), On soft topological spaces, Comput. Math. Appl., 61 (7), 1786-1799.
  • Wardowski, D.,(2013), On A Soft Mapping And Its Fixed Points, Fixed Point Theory Appl., 11 pages.
  • Zadeh, L.A.,(1965), Fuzzy Sets, Information and Control, 8, 338353.
  • s
Yıl 2020, Cilt: 10 Sayı: 1, 118 - 127, 01.01.2020

Öz

Kaynakça

  • Ali, M.I., Feng,F., Liu,X., Min,W.K. and Shabir,M., (2003), On some new operations in soft set theory, Computer and Mathematics with Application, 57, (9), 1547- 1553.
  • Atanassov, K.,(1986), Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 8796.
  • Cagman, N. and Enginoglu, S.,(2010), Soft set theory and unit-int decision making, European J. Oper. Res., 207, 848-855.
  • Cetkin, V.,Aygunoglu, A. and Aygun, H.(2016), A new approach in handling soft decision making problems, J. Nonlinear Sci. Appl., 9, 231-239.
  • Das, S. and Samanta, S. K.,(2012), Soft real set, soft real number and their properties, J. Fuzzy Math., , (3), 551-576.
  • Das, S. and Samanta, S. K, (2013), On soft metric spaces, J. Fuzzy Math., 21 (3), 707-734.
  • Gau, W.L. and Buehrer, D.J.,(1993) Vague sets, IEEE Transactions on Systems, Man and Cybernetics, /2, 610614.
  • Gorzalzany, M.B.,(1987) A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems, 21, 117.
  • Guler, A. C., Yildirim, E. D. and Ozbakir, O. B.,(2016) A Fixed point theorem on soft G-metric spaces, J. Nonlinear Sci. Appl., 9, 885-894.
  • Guler, A. C.and Yildirim, E. D.,(2016), A note on soft G-metric spaces about fixed point theorems
  • Annals of Fuzzy Mathematics and Informatics, Volume 12, No. 5, 691-701. Jleli, M. and Samet, B.,(2012), Remarks on G-metric spaces and fixed point theorems, Fixed Point
  • Theory and Applications, 2012:210.
  • Maji, P.K., Roy, A.R. and Biswas,R., (2002), An application of soft sets in a decision making problem
  • Computers and Mathematics with Applications, 44, 10771083.
  • Molodtsov, D.,(1999), Soft set theory first results, Computers and Mathematics with Applications, , 1931.
  • Molodtsov,D.,(2004), The Theory of Soft Sets, URSS Publishers, Moscow, (in Russian).
  • Mustafa, Z., (2005), A new structure for generalized metric spaces-with applications to fixed point theory, PhD thesis, the University of Newcastle, Australia
  • Mustafa, Z. and Sims, B.,(2006) A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2), 289-297.
  • Pawlak, Z.,(1982), Rough sets, International Journal of Information and Computer Sciences, 11, 341
  • Shabir M. and Naz,M.,(2011), On soft topological spaces, Comput. Math. Appl., 61 (7), 1786-1799.
  • Wardowski, D.,(2013), On A Soft Mapping And Its Fixed Points, Fixed Point Theory Appl., 11 pages.
  • Zadeh, L.A.,(1965), Fuzzy Sets, Information and Control, 8, 338353.
  • s
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

N. B. Gungor

Yayımlanma Tarihi 1 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 1

Kaynak Göster