Derleme
BibTex RIS Kaynak Göster

Ca+2 Sinyallerinin Bitki İmmünitesindeki Rolü

Yıl 2022, Cilt: 4 Sayı: 2, 63 - 71, 30.05.2022

Öz

Bitkilerin en önemli besin maddelerinden biri olan kalsiyum iyonları, bitki gelişimi ve immünitesinde önemli sinyal verme aracı moleküllerinden birisidir. Biyotik bir uyarana karşı bitki membranında bulunan kalsiyum iyon kanallarıyla hücreye giriş yapan Ca+2 katyonları fazla biriktiğinde, sitoplazmada homeostazı sağlamak amacıyla ACA protein kanallarıyla hücre dışına verilmektedir. Kalsiyumun sitoplazmik salınımı, özellikle immünitenin daha ileri aşamalarında kalmodulin ve kalmodulin benzeri proteinlere bağlı olarak gerçekleşecek olan olayların aktif hale geçirilmesi için önemlidir. Kalsiyumun bitki immünitesindeki rolü bir MAMP olan FLS2 ile ilgili yapılan araştırmalarla kısmen ortaya konmuştur. Biyotik bir uyarıcının bitki membran reseptörleriyle algılandıktan sonra Ca+2 iyon akışıyla immün tepki arasında nasıl bağlantı olduğunu ortaya çıkarmak amacıyla bu derleme ele alınmıştır.

Kaynakça

  • Aldon, D., Mbengue, M., Mazars, M., Galaud, J.P., 2018. Calcium Signalling in Plant Biotic Interactions. International Journal of Molecular Sciences 19(3): 665. https://doi.org/10.3390/ijms19030665.
  • Astegno, A., Bonza, M.C., Vallone, R., La Verde, V., D'Onofrio, M., Luoni, L., Molesini, B., Dominici, P., 2017. Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity. The Journal of Biological Chemistry 292(36): 15049-15061. https://doi.org/10.1074/jbc.M117.787796.
  • Costa, A., Louni, L., Marrano, C.A., Hashimoto, K., Köster, P., Giacometti, S., De Michelis, M.I., Kudla, J., Bonza, M.C., 2017. Ca2+-dependent phospho regulation of the plasma membrane Ca2+-ATPase ACA8 modulates stimulus-induced calcium signatures. Journal of Experimental Botany 68(12): 3215-3230. https://doi.org/10.1093/jxb/erx162.
  • Demidchik, V., Shabala, S., 2018. Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated ROS-Ca2+ Hub. Functional Plant Biology 45: 9-27. https://doi.org/10.1071/FP16420.
  • Demidchik, V., Shabala, S., Isayenkov, S., Juin, T.A., Pottosin, I., 2018. Calcium transport across plant membranes: mechanisms and functions. The New Phytologist 220(1): 49-69. https://doi.org/10.1111/nph.15266.
  • Du, L., Yang, T., Puthanveettil, S.V., Poovaiah, B.W., 2011. Decoding of calcium signals hrough calmodulin: calmodulin-binding proteins in plants. In: S.Luan, (Eds): Coding and decoding of calcium signals in plants. Berlin, pp. 177-233.
  • Frei dit Frey, N., Mbengue, M., Kwaaitaal, M., Nitsch, L., Altenbach, D., Häweker, H., Lozana-Duran, R., Njo, M.F., Beeckman, T., Huettel, B., Borst, J.W., Panstruga, R., Robatzek, S., 2012. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development. Plant Physiology 159(2): 798-809. https://doi.org/10.1104/pp.111.192575.
  • Galon, Y., Nave, R., Boyce, J.M., Nachmias, D., Knight, M.R., Fromm, H., 2008. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. Federation of European Biochemical Societies Letters 582: 943-948. https://doi.org/10.1016/j.febslet.2008.02.037.
  • Geisler, M., Axelsen, K.B., Harper, J.F., Palmgren, M.G., 2000. Molecular aspects of higher plants P-type Ca(2+)-ATPases. Biochimica et Biophysica Acta 1465(1-2): 52-78. https://doi.org/10.1016/s0005-2736(00)00131-0.
  • Guo, S., Zhang, Y., Zeng, P., Li, M., Zhang, Q., Li, T., Wang, X., Kang, Z., Zhang, Z., 2021. TaBIn1 negatively regulates wheat resistance to stripe rust by reducing Ca2+ influx. bioRxiv 2021.07.16.452683. https://doi.org/10.1101/2021.07.16.452683.
  • Halling, D.B., Liebeskind, B.J., Hall, A.W., Aldrich, R.W., 2016. Conserved properties of individual Ca2+-binding sites in calmodulin. Proceedings of the National Academy of Sciences Of the United States of America 113(9): E1216-E1225. https://doi.org/10.1073/pnas.1600385113.
  • Hedrich, R., 2012. Ion channels in plants. Physiological Reviews 92(4): 1777-1811. https://doi.org/10.1152/physrev.00038.2011.
  • Hilleary, R., Paez-Valencia, J., Vens, C., Toyota, M., Palmgren, M., Gilroy, S., 2020. Tonoplast-localized Ca2+pumps regulate Ca2+ signals during pattern-triggered immunity Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA 117(31): 18849-18857. https://doi.org/10.1073/pnas.2004183117.
  • Huang, W., Wu, Z., Tian, H., Li, X., Zhang, Y., 2021. Arabidopsis Calmodulin-Binding Protein 60b plays dual roles in plant immunity. Plant Communications 2(6): 100213. https://doi.org/10.1016/j.xplc.2021.100213.
  • Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J.D.G., Shirasu, K., Menke, F., Jones, A., Zipfel, C., 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell 54: 43-55. https://doi.org/10.1016/j.molcel.2014.02.021.
  • Kong, X., Xu, L., Jamieson, P., 2020. Plant Sense: The Rise of Calcium Channels. Trends in Plant Science 25(9): 838-841. https://doi.org/10.1016/j.tplants.2020.06.002.
  • Koo, Y.M., Heo, A.Y., Choi, H.W., 2020. Salicyclic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathology Journal 36(1): 1-10. https://doi.org/0.5423/PPJ.RW.12.2019.0295.
  • Kölling, M., Kumari, P., Bürstenbinder K., 2019. Calcium- and calmodulin-regulated microtubule-associated proteins as signal-integration hubs at the plasma membrane-cytoskeleton nexus. Journal of Experimental botany 70(2): 387-396. https://doi.org/10.1093/jxb/ery397.
  • Kudla, J., Batistic, O., Hashimoto, K., 2010. Calcium signals: the lead currency of plant information processing. The Plant Cell, 22(3): 541-563. https://doi.org/10.1105/tpc.109.072686.
  • Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., Parniske, T., Romeis, T., Schumacher K., 2018. Advances and current challenges in calcium signaling. The New Phytologist 218(2): 414-431. https://doi.org/10.1111/nph.14966.
  • Kurusu, T., Kuchitsu, K., Nakano, M., Nakayama, Y., Iida, H., 2013. Plant mechanosensing and Ca2+ transport. Trends in Plant Science 18: 227-233.
  • Liang, X., Zhou J.M., 2018. Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling. Annual Review of Plant Biology 69: 267-299.
  • Macho, A.P., Zipfel, C., 2014. Plant PRRs and the activation of innate immune signaling. Molecular Cell 54(2): 263-272. https://doi.org/10.1016/j.molcel.2014.03.028.
  • Morgan, A.J., Galione, A., 2014. Two-pore channels (TPCs): current controversies. BioEssays 36(2): 173-183. https://doi.org/10.1002/bies.201300118.Mur, L.A., Kenton, P., Lloyd, A.J., Ougham, H., Prats, E., 2008. The hypersensitive response: the centenary is upon us but how much do we know?. Journal of Experimental Botany 59(3): 501-520. https://doi.org/10.1093/jxb/erm239.
  • Oelmüller, R., 2021. Threat at One End of the Plant: What Travels to Inform the Other Parts? International Journal of Molecular Sciences 22(6): 3152. https://doi.org/10.3390/ijms22063152.
  • Pchitskaya, E., Popugaeva, E., Bezprozvanny, I., 2018. Calciım signaling and molecular mechanisms underlying neuro degenerative diseases. Cell Calcium 70: 87-94. https://doi.org/10.1016/j.ceca.2017.06.008.
  • Poovaiah, B.W., Du, L., Wang, H., Yang, T., 2013. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant- microbei nteractions. Plant Physiology 163: 531-542. https://doi.org/10.1104/pp113.220780.
  • Rafaello, A., Mammucari, C., Gherardi, G., Rizzuto, R., 2016. Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends in Biochemical Sciences 41(12): 1035-1049. https://doi.org/10.1016/j.tibs.2016.09.001.
  • Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J., Scheel, D., 2011. Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. The Plant Journal 68: 100-113. https://doi.org/10.1111/j.1365-313X.2011.04671.x.
  • Ren, H., Zhao, X., Li, W., Hussain, J., Qi, G., Liu, S., 2021. Calcium Signaling in Plant Programmed Cell Death. Cells 10(5): 1089. https://doi.org/10.3390/cells10051089.
  • Saijo, Y., Loo, E, P., 2020. Plant immunity in signal integration between biotic and abiotic stres responses. The New Phytologist 225(1): 87-104. https://doi.org/10.1111/nph.15989.
  • Seyfferth, C., Tsuda, K., 2014. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science 5: 697. https://doi.org/10.3389/fpls.2014.00697.
  • Singh, S., Virdi, A.S., Singh, P., 2020. Calmodulin-Binding Kinases. Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective 248-265.
  • Singh, N., Pandey, G.K., 2020. Calcium signatures and signal transduction schemes during microbe interactions in Arabidopsis thaliana. Journal of Plant Biochemistry and Biotechnology 29: 675-686. https://doi.org/10.1007/s13562-020-00604-6.
  • Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, U.C., Teige, M., 2012. Plant organellar calcium signalling: an emerging field. Journal of Experimental Botany 63(4): 1525-1542. https://doi.org/10.1093/jxb/err394.
  • Su, W., Huang, L., Ling, H.,Ling, H., Mao, H., Huang, N., Su, Y., Ren, Y., Wang, D., Xu, L., Muhammad, K., Que, Y., 2020. Sugar cane calcineurin B-like (CBL) genes play important but versatile roles in regulation of responses to biotic and abiotic stresses. Scientific Reports 10(1): 167. https://doi.org/10.1038/s41598-019-57058-7.
  • Sun, T., Zhang, Y., Li, Y., Zhang, Q., Ding, Y., Zhang, Y., 2015. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nature Communications 6: 10159. https://doi.org/10.1038/ncomms10159. Swarbreck, S.M., Colaço, R., Davies, J.M., 2013. Plant calcium-permeable channels. Plant Physiology 163(2): 514-522. doi: 10.1104/pp.113.220855.
  • Thor, K., 2019. Calcium-Nutrient and Messenger. Frontiers in Plant Science 10: 440. https://doi.org/10.3389/fpls.2019.00440.
  • Thor, K., Jiang, S., Michard, E., George, J., Scherzer, S., Huang, S., Dindas, J., Derbyshire, P., …….. Zipfel, C., 2020. The calcium permeable-channel OSCA 1.3 regulates plant stomatal immunity. Nature 585(7826): 569-573. https://doi.org/10.1038/s41586-020-2702-1.
  • Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D., Hu, S., Zhang, L., Niu, Q., Li, L., Staskawicz, B.J., Luan, S., 2019. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572(7767): 131-135. https://doi.org/10.1038/s41586-019-1413-y.
  • Tian, W., Wang, C., Gao, Q., Li, L., Luan, S., 2020. Calcium spikes waves and oscillations in plant development and biotic interactions. Nature Plants 6(7): 750-759. https://doi.org/10.1038/s41477-020-0667-6.
  • Tidow, H., Poulsen, L.R., Andreeva, A., Knudsen, M., Hein, K.L., Wiuf, C., Palmgren, M.G., Nissen, P., 2012. A bimodular mechanism of calcium control in eukaryotes. Nature 491(7424): 468-472. https://doi.org/10.1038/nature11539.
  • Tuteja, N., Mahajan, S., 2007. Calcium signaling network in plants: an overview. Plant Signaling and Behavior 2(2): 79-85. https://doi.org/10.4161/psb.2.2.4176.
  • Wang, G., Zeng, H., Hu, X., Zhu, Y., Chen, Y., Shen, C., Wang, H., Poovaiah, B.W., Du, L., 2015. Identification and expression analyses of calmodulin-binding transcription activator genes in soybean. Plant and Soil 386: 205-221. https://doi.org/10.1007/s11104-014-2267-6.
  • Wang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y., Ge, T., Wu, Z., Hou, X., Zhang, J., Qi, Z., 2017. CNGC2 Is a Ca2+ Influx Channel That Prevents Accumultion of Apoplastic Ca2+ in the Leaf. Plant Physiology 173(2): 1342-1354. https://doi.org/10.1104/pp.16.01222.
  • Xu, B., Cheval, C., Laohavisit, A., Hocking, B., Chiasson, D., Olsson, T.S.G., Shirasu, K., Faulkner, C., Gilliham, M., 2017. A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses. The New Phytologist 215(1): 77-84. https://doi.org/10.1111/nph.14599.
  • Yang, D.L., Shi, Z., Bao, Y., Yan, J., Yang, Z., Yu, H., Li, Y., Gou, M., Wang, S., Zou, B., Xu, D., Ma, Z., Kim, J., Hua, J., 2017. Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure and Plant Immunity. Plant Physiology 175(1): 424-437. https://doi.org/10.1104/pp.17.00495.
  • Yu, H., Yan, J., Du, X., Hua, J., 2018. Overlapping and diffferential roles of plasma membrane calcium ATPases in Arabidopsis growth and environmental responses. Journal of Experimental Botany 69(10): 2693-2703. https://doi.org/10.1093/jxb/ery073.
  • Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., Johnson, D. M., Swift, G.B., He, Y., Siedow, J.N., Pei, Z. M., 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514(7522): 367-371. https://doi.org/10.1038/nature13593.
  • Yuan, P., Jauregui, E., Du, L., Tanaka, K., Poovaiah, B.W., 2017. Calcium signatures and signaling events orchestrate plant-microbe interactions. Current Opinion in Plant Biology 38: 173-183. https://doi.org/10.1016/j.pbi.2017.06.003.
  • Zhang, H., Hu, Z., Lei, C., Zheng, C., Wang, J., Shao, S., Li, X., Xia, X., Cai, X., Zhou, J., Zhou, Y., Yu, J., Foyer, C.H., Shi, K., 2018. A plant phytosulfokine peptide initiates auxin- dependent immunity through cytosolic Ca2+ signaling in tomato. The Plant Cell 30(3): 652-667. https://doi.org/10.1105/tpc.17.00537.
  • Zhu, X., Caplan, J., Mamillapalli, P., Czymmek, K., Dinesh-Kumar, S.P., 2010. Function of endoplasmic reticulum calciumATPase in innate immunity-mediated programmed cell death. European Molecular Biology Organization 29(5): 1007-1018. https://doi.org/10.1038/emboj.2009.402.

The Role of Ca2+ Signals in Plant Immunity

Yıl 2022, Cilt: 4 Sayı: 2, 63 - 71, 30.05.2022

Öz

Calcium ions, one of the most important nutrition in plants, are also one of the important mediator components in plant development and immunity. Ca2+ cations influxed into cell with ion channels in the plant membrane to biotic stimuli are effluxed in excessively accumulation outside cell through ACA protein channels to regulate homeostasis in cytoplasm. Cytoplasmic oscillation of Ca2+ is significant to activate the down regulation of immune cascade to occur depending calmodulin and calmodulin like proteins. The role of calcium in plant immunity has been partially uncovered in researches with associated with FLS2, a MAMP. Aim of this mini review is to disclosed the relationship between Ca2+ ion flux and immune reaction after a biotic stimulant is perceived via plant membrane surface receptors. 

Kaynakça

  • Aldon, D., Mbengue, M., Mazars, M., Galaud, J.P., 2018. Calcium Signalling in Plant Biotic Interactions. International Journal of Molecular Sciences 19(3): 665. https://doi.org/10.3390/ijms19030665.
  • Astegno, A., Bonza, M.C., Vallone, R., La Verde, V., D'Onofrio, M., Luoni, L., Molesini, B., Dominici, P., 2017. Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity. The Journal of Biological Chemistry 292(36): 15049-15061. https://doi.org/10.1074/jbc.M117.787796.
  • Costa, A., Louni, L., Marrano, C.A., Hashimoto, K., Köster, P., Giacometti, S., De Michelis, M.I., Kudla, J., Bonza, M.C., 2017. Ca2+-dependent phospho regulation of the plasma membrane Ca2+-ATPase ACA8 modulates stimulus-induced calcium signatures. Journal of Experimental Botany 68(12): 3215-3230. https://doi.org/10.1093/jxb/erx162.
  • Demidchik, V., Shabala, S., 2018. Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated ROS-Ca2+ Hub. Functional Plant Biology 45: 9-27. https://doi.org/10.1071/FP16420.
  • Demidchik, V., Shabala, S., Isayenkov, S., Juin, T.A., Pottosin, I., 2018. Calcium transport across plant membranes: mechanisms and functions. The New Phytologist 220(1): 49-69. https://doi.org/10.1111/nph.15266.
  • Du, L., Yang, T., Puthanveettil, S.V., Poovaiah, B.W., 2011. Decoding of calcium signals hrough calmodulin: calmodulin-binding proteins in plants. In: S.Luan, (Eds): Coding and decoding of calcium signals in plants. Berlin, pp. 177-233.
  • Frei dit Frey, N., Mbengue, M., Kwaaitaal, M., Nitsch, L., Altenbach, D., Häweker, H., Lozana-Duran, R., Njo, M.F., Beeckman, T., Huettel, B., Borst, J.W., Panstruga, R., Robatzek, S., 2012. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development. Plant Physiology 159(2): 798-809. https://doi.org/10.1104/pp.111.192575.
  • Galon, Y., Nave, R., Boyce, J.M., Nachmias, D., Knight, M.R., Fromm, H., 2008. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. Federation of European Biochemical Societies Letters 582: 943-948. https://doi.org/10.1016/j.febslet.2008.02.037.
  • Geisler, M., Axelsen, K.B., Harper, J.F., Palmgren, M.G., 2000. Molecular aspects of higher plants P-type Ca(2+)-ATPases. Biochimica et Biophysica Acta 1465(1-2): 52-78. https://doi.org/10.1016/s0005-2736(00)00131-0.
  • Guo, S., Zhang, Y., Zeng, P., Li, M., Zhang, Q., Li, T., Wang, X., Kang, Z., Zhang, Z., 2021. TaBIn1 negatively regulates wheat resistance to stripe rust by reducing Ca2+ influx. bioRxiv 2021.07.16.452683. https://doi.org/10.1101/2021.07.16.452683.
  • Halling, D.B., Liebeskind, B.J., Hall, A.W., Aldrich, R.W., 2016. Conserved properties of individual Ca2+-binding sites in calmodulin. Proceedings of the National Academy of Sciences Of the United States of America 113(9): E1216-E1225. https://doi.org/10.1073/pnas.1600385113.
  • Hedrich, R., 2012. Ion channels in plants. Physiological Reviews 92(4): 1777-1811. https://doi.org/10.1152/physrev.00038.2011.
  • Hilleary, R., Paez-Valencia, J., Vens, C., Toyota, M., Palmgren, M., Gilroy, S., 2020. Tonoplast-localized Ca2+pumps regulate Ca2+ signals during pattern-triggered immunity Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA 117(31): 18849-18857. https://doi.org/10.1073/pnas.2004183117.
  • Huang, W., Wu, Z., Tian, H., Li, X., Zhang, Y., 2021. Arabidopsis Calmodulin-Binding Protein 60b plays dual roles in plant immunity. Plant Communications 2(6): 100213. https://doi.org/10.1016/j.xplc.2021.100213.
  • Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J.D.G., Shirasu, K., Menke, F., Jones, A., Zipfel, C., 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell 54: 43-55. https://doi.org/10.1016/j.molcel.2014.02.021.
  • Kong, X., Xu, L., Jamieson, P., 2020. Plant Sense: The Rise of Calcium Channels. Trends in Plant Science 25(9): 838-841. https://doi.org/10.1016/j.tplants.2020.06.002.
  • Koo, Y.M., Heo, A.Y., Choi, H.W., 2020. Salicyclic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathology Journal 36(1): 1-10. https://doi.org/0.5423/PPJ.RW.12.2019.0295.
  • Kölling, M., Kumari, P., Bürstenbinder K., 2019. Calcium- and calmodulin-regulated microtubule-associated proteins as signal-integration hubs at the plasma membrane-cytoskeleton nexus. Journal of Experimental botany 70(2): 387-396. https://doi.org/10.1093/jxb/ery397.
  • Kudla, J., Batistic, O., Hashimoto, K., 2010. Calcium signals: the lead currency of plant information processing. The Plant Cell, 22(3): 541-563. https://doi.org/10.1105/tpc.109.072686.
  • Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., Parniske, T., Romeis, T., Schumacher K., 2018. Advances and current challenges in calcium signaling. The New Phytologist 218(2): 414-431. https://doi.org/10.1111/nph.14966.
  • Kurusu, T., Kuchitsu, K., Nakano, M., Nakayama, Y., Iida, H., 2013. Plant mechanosensing and Ca2+ transport. Trends in Plant Science 18: 227-233.
  • Liang, X., Zhou J.M., 2018. Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling. Annual Review of Plant Biology 69: 267-299.
  • Macho, A.P., Zipfel, C., 2014. Plant PRRs and the activation of innate immune signaling. Molecular Cell 54(2): 263-272. https://doi.org/10.1016/j.molcel.2014.03.028.
  • Morgan, A.J., Galione, A., 2014. Two-pore channels (TPCs): current controversies. BioEssays 36(2): 173-183. https://doi.org/10.1002/bies.201300118.Mur, L.A., Kenton, P., Lloyd, A.J., Ougham, H., Prats, E., 2008. The hypersensitive response: the centenary is upon us but how much do we know?. Journal of Experimental Botany 59(3): 501-520. https://doi.org/10.1093/jxb/erm239.
  • Oelmüller, R., 2021. Threat at One End of the Plant: What Travels to Inform the Other Parts? International Journal of Molecular Sciences 22(6): 3152. https://doi.org/10.3390/ijms22063152.
  • Pchitskaya, E., Popugaeva, E., Bezprozvanny, I., 2018. Calciım signaling and molecular mechanisms underlying neuro degenerative diseases. Cell Calcium 70: 87-94. https://doi.org/10.1016/j.ceca.2017.06.008.
  • Poovaiah, B.W., Du, L., Wang, H., Yang, T., 2013. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant- microbei nteractions. Plant Physiology 163: 531-542. https://doi.org/10.1104/pp113.220780.
  • Rafaello, A., Mammucari, C., Gherardi, G., Rizzuto, R., 2016. Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends in Biochemical Sciences 41(12): 1035-1049. https://doi.org/10.1016/j.tibs.2016.09.001.
  • Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J., Scheel, D., 2011. Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. The Plant Journal 68: 100-113. https://doi.org/10.1111/j.1365-313X.2011.04671.x.
  • Ren, H., Zhao, X., Li, W., Hussain, J., Qi, G., Liu, S., 2021. Calcium Signaling in Plant Programmed Cell Death. Cells 10(5): 1089. https://doi.org/10.3390/cells10051089.
  • Saijo, Y., Loo, E, P., 2020. Plant immunity in signal integration between biotic and abiotic stres responses. The New Phytologist 225(1): 87-104. https://doi.org/10.1111/nph.15989.
  • Seyfferth, C., Tsuda, K., 2014. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science 5: 697. https://doi.org/10.3389/fpls.2014.00697.
  • Singh, S., Virdi, A.S., Singh, P., 2020. Calmodulin-Binding Kinases. Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective 248-265.
  • Singh, N., Pandey, G.K., 2020. Calcium signatures and signal transduction schemes during microbe interactions in Arabidopsis thaliana. Journal of Plant Biochemistry and Biotechnology 29: 675-686. https://doi.org/10.1007/s13562-020-00604-6.
  • Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, U.C., Teige, M., 2012. Plant organellar calcium signalling: an emerging field. Journal of Experimental Botany 63(4): 1525-1542. https://doi.org/10.1093/jxb/err394.
  • Su, W., Huang, L., Ling, H.,Ling, H., Mao, H., Huang, N., Su, Y., Ren, Y., Wang, D., Xu, L., Muhammad, K., Que, Y., 2020. Sugar cane calcineurin B-like (CBL) genes play important but versatile roles in regulation of responses to biotic and abiotic stresses. Scientific Reports 10(1): 167. https://doi.org/10.1038/s41598-019-57058-7.
  • Sun, T., Zhang, Y., Li, Y., Zhang, Q., Ding, Y., Zhang, Y., 2015. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nature Communications 6: 10159. https://doi.org/10.1038/ncomms10159. Swarbreck, S.M., Colaço, R., Davies, J.M., 2013. Plant calcium-permeable channels. Plant Physiology 163(2): 514-522. doi: 10.1104/pp.113.220855.
  • Thor, K., 2019. Calcium-Nutrient and Messenger. Frontiers in Plant Science 10: 440. https://doi.org/10.3389/fpls.2019.00440.
  • Thor, K., Jiang, S., Michard, E., George, J., Scherzer, S., Huang, S., Dindas, J., Derbyshire, P., …….. Zipfel, C., 2020. The calcium permeable-channel OSCA 1.3 regulates plant stomatal immunity. Nature 585(7826): 569-573. https://doi.org/10.1038/s41586-020-2702-1.
  • Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D., Hu, S., Zhang, L., Niu, Q., Li, L., Staskawicz, B.J., Luan, S., 2019. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572(7767): 131-135. https://doi.org/10.1038/s41586-019-1413-y.
  • Tian, W., Wang, C., Gao, Q., Li, L., Luan, S., 2020. Calcium spikes waves and oscillations in plant development and biotic interactions. Nature Plants 6(7): 750-759. https://doi.org/10.1038/s41477-020-0667-6.
  • Tidow, H., Poulsen, L.R., Andreeva, A., Knudsen, M., Hein, K.L., Wiuf, C., Palmgren, M.G., Nissen, P., 2012. A bimodular mechanism of calcium control in eukaryotes. Nature 491(7424): 468-472. https://doi.org/10.1038/nature11539.
  • Tuteja, N., Mahajan, S., 2007. Calcium signaling network in plants: an overview. Plant Signaling and Behavior 2(2): 79-85. https://doi.org/10.4161/psb.2.2.4176.
  • Wang, G., Zeng, H., Hu, X., Zhu, Y., Chen, Y., Shen, C., Wang, H., Poovaiah, B.W., Du, L., 2015. Identification and expression analyses of calmodulin-binding transcription activator genes in soybean. Plant and Soil 386: 205-221. https://doi.org/10.1007/s11104-014-2267-6.
  • Wang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y., Ge, T., Wu, Z., Hou, X., Zhang, J., Qi, Z., 2017. CNGC2 Is a Ca2+ Influx Channel That Prevents Accumultion of Apoplastic Ca2+ in the Leaf. Plant Physiology 173(2): 1342-1354. https://doi.org/10.1104/pp.16.01222.
  • Xu, B., Cheval, C., Laohavisit, A., Hocking, B., Chiasson, D., Olsson, T.S.G., Shirasu, K., Faulkner, C., Gilliham, M., 2017. A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses. The New Phytologist 215(1): 77-84. https://doi.org/10.1111/nph.14599.
  • Yang, D.L., Shi, Z., Bao, Y., Yan, J., Yang, Z., Yu, H., Li, Y., Gou, M., Wang, S., Zou, B., Xu, D., Ma, Z., Kim, J., Hua, J., 2017. Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure and Plant Immunity. Plant Physiology 175(1): 424-437. https://doi.org/10.1104/pp.17.00495.
  • Yu, H., Yan, J., Du, X., Hua, J., 2018. Overlapping and diffferential roles of plasma membrane calcium ATPases in Arabidopsis growth and environmental responses. Journal of Experimental Botany 69(10): 2693-2703. https://doi.org/10.1093/jxb/ery073.
  • Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., Johnson, D. M., Swift, G.B., He, Y., Siedow, J.N., Pei, Z. M., 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514(7522): 367-371. https://doi.org/10.1038/nature13593.
  • Yuan, P., Jauregui, E., Du, L., Tanaka, K., Poovaiah, B.W., 2017. Calcium signatures and signaling events orchestrate plant-microbe interactions. Current Opinion in Plant Biology 38: 173-183. https://doi.org/10.1016/j.pbi.2017.06.003.
  • Zhang, H., Hu, Z., Lei, C., Zheng, C., Wang, J., Shao, S., Li, X., Xia, X., Cai, X., Zhou, J., Zhou, Y., Yu, J., Foyer, C.H., Shi, K., 2018. A plant phytosulfokine peptide initiates auxin- dependent immunity through cytosolic Ca2+ signaling in tomato. The Plant Cell 30(3): 652-667. https://doi.org/10.1105/tpc.17.00537.
  • Zhu, X., Caplan, J., Mamillapalli, P., Czymmek, K., Dinesh-Kumar, S.P., 2010. Function of endoplasmic reticulum calciumATPase in innate immunity-mediated programmed cell death. European Molecular Biology Organization 29(5): 1007-1018. https://doi.org/10.1038/emboj.2009.402.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Berna Baş 0000-0003-2455-2849

Yayımlanma Tarihi 30 Mayıs 2022
Gönderilme Tarihi 5 Nisan 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Baş, B. (2022). Ca+2 Sinyallerinin Bitki İmmünitesindeki Rolü. Uluslararası Anadolu Ziraat Mühendisliği Bilimleri Dergisi, 4(2), 63-71.