Derleme
BibTex RIS Kaynak Göster

İçme Suyu Arıtma Çamurlarının Geoteknik Özellikleri ve Faydalı Kullanım Alanları

Yıl 2019, Cilt: 2 Sayı: 1, 11 - 19, 02.01.2019

Öz



İçme sularının arıtımı sırasında su içeriği yüksek (genellikle
ağırlıkça %95’den daha fazla) çamur ortaya çıkmaktadır. Genellikle koagülasyon
işleminden ortaya çıkan bu çamur, kullanılan koagülant türüne bağlı olarak alum
ya da demir çamuru olarak adlandırılmaktadır. Katı madde miktarı az, su içeriği
fazla olduğu için büyük hacimler oluşturan su arıtma çamurları arıtma
tesislerinde işlenmesi ve bertarafı sorun oluşturan bir atıktır. İçme suyu
arıtma çamurlarının çeşitli alanlarda faydalı kullanıma sunulması bu atıkların
bertarafıyla ilgili problemleri de ortadan kaldıracağı için büyük önem
taşımaktadır. Bu çalışmada, içme
suyu arıtma çamurlarının genel özellikleri hakkında bilgi verilmiş ve geoteknik
alanındaki faydalı kullanım alanları incelenmiştir.



Kaynakça

  • [1] Sun, Y., Fan, W., Zheng, H., Zhang, Y., Li, F., Chen, W., 2015, Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge, PLoS ONE, Vol. 10(6),1-16.
  • [2] Ahmad, T., Ahmad, K., Alam, M., 2016, Sustainable Management of Water Treatment Sludge Through 3‘R’ Concept, J. Cleaner Prod., Vol. 124, 1–13.
  • [3] Mortula, M.M., Gagnon, G.A., 2007, Alum Residuals as a Low Technology for Phosphorus Removal from Aquaculture Processing Water, Aquacultural Eng., Vol. 36, 233–238.
  • [4] Babatunde, A.O., Zhao, Y.Q., 2007, Constructive Approaches Toward Water Treatment Works Sludge Management: An International Review of Beneficial Reuses, Crit. Rev. Environ. Sci. Technol. Vol. 37, 129-164.
  • [5] Dharmappa HB, Hasia A, Hagare P (1997) Water treatment plant residuals management. Water Sci Technol 35(8):45–56
  • [6] İstanbul Su ve Kanalizasyon İdaresi Faaliyet Raporu, 2017, web sayfası: http://www.iski.gov.tr/web/assets/SayfalarDocs/faaliyetraporlari/faaliyetraporu2008/2017_Faaliyet_Raporu..pdf, erişim tarihi: 05.01.2019.
  • [7] Tchobanoglous, G., Burton, F.L., Stensel, H.D., 2003, Wastewater Engineering: Treatment and Reuse, 4th ed., Metcalf & Eddy Inc., New York, NY, McGraw-Hill.
  • [8] Lin, S., Evans, R.L., Schnepper, D., Hill, T., 1984, Evaluation of Wastes from the East St. Louis Water Treatment Plant and Their İmpact on the Mississippi River, Illinois State Water Survey Div., Champaign—National Technical Information Service-NTIS, ISWS/CIR- 160/84.
  • [9] M.C. Wang, T. Tseng, 1993, Permeability Behavior of a Water Treatment Sludge, J. Geotech. Eng., Vol. 119, 1672-1677.
  • [10] B. O’Kelly, 2010, Landfill Disposal of alum Water Treatment Residues, some Pertinent Geoengineering Properties, J. Res. Sci. Technol., Vol. 7, 95-113.
  • [11] CPCB 2011 Status of water treatment plants in India (New Delhi: Central Pollution Control Board
  • [12] Razali, M., Zhao, Y.Q., Bruen, M., 2007, Effectiveness of a Drinking-Water Treatment Sludge in Removing Different Phosphorus Species from Aqueous Solution, Separ. Purif. Technol., Vol. 55, 300-306.
  • [13] Basim, S.C., 1999, Physical and Geotechnical Characterization of Water Treatment Plant Residuals, New Jersey Institute of Technology.
  • [14] Hsieh, H.N., Raghu. D., 1997, Criteria development for water Treatment Plant Residual Monofill, AWWA - American Water Works Association.
  • [15] Xia, Z., 1994, Geotechnical Characterization of Water Treatment Plant Residuals, New Jersey Institute of Technology.
  • [16] O’Kelly, B.C., Quille, M.E., 2009, Shear Strength Properties of Water Treatment Residues, Geotech. Eng., Vol. 163, 23-35.
  • [17] O’Kelly, B.C., 2008, Geotechnical properties of a Municipal Water Treatment Sludge İncorporating a Coagulant, Can. Geotech. J., Vol. 45, 715-725.
  • [18] Balkaya, M., Evaluation of the Geotechnical Properties of Alum Sludge, Zeolite, and Their Mixtures for Beneficial Usage, Environ. Prog. Sustain., Vol. 34(4), 1028-1037.
  • [19] Raghu, D., Hsieh, H.N., Neilan, T., Yih, C.T., 1987, Water treatment Plant Sludge as Landfill Liner, In R.D. Woods (Ed.), Geotechnical Practice for Waste Disposal’87, New York: American Society of Civil Engineers, 744–758.
  • [20] Wang, M.C., Hull, J.Q., Jao, M., Dempsey, B.A., Cornwell, D.A., 1992, Engineering Behavior of Water Treatment Sludge, J. Environ. Eng., Vol. 118(6), 848-864.
  • [21] Wang, M. C , Hull, J. Q., Jao, M., 1991, Stabilization of Water Treatment Plant Sludge for Possible Utilization as Embankment Material, Transp. Res. Rec., Vol. 1345, 36-43.
  • [22] Raghu, D., Hsieh, H.N., 1986, Material Properties of Water Treatment Plant Sludges, Int. J. Civ. Eng. Pract. Des. Eng., 5(5): 927–941.
  • [23] Knocke, W. R., and Wakeland, D. L., 1983, Fundamental Characteristics of Water Treatment Plant Sludges, J. AWWA, Vol. 75(10), 516-523.
  • [24] UN-Water, 2015, Wastewater management: a UN-Water Analytical Brief, web sayfası: http://www.unwater.org/publications/wastewater-management-un-water-analytical-brief/, erişim tarihi: 15/11/2016.
  • [25] United Nations World Water Assessment Programe, WWAP, 2012, The Nations World Water Development Report 4. Managing Water under Uncertainty and Risk, UNESCO, Paris, web sayfası: http://www.unesco.org/new/fileadmin/MULTIMEDIA/HQ/SC/pdf/WWDR4%20Volume%201-Managing%20Water%20under%20Uncertainty%20and%20Risk.pdf, erişim tarihi: 20/03/2015.
  • [26] Qi, L., Cheng, R., Wang, H., Zheng, X., Zhang, G., Li, G., 2011, Recycle of Alum Sludge with PAC (RASP) for Drinking Water Treatment, Desalin. Water Treat., Vol. 25, 170-175.
  • [27] Babatunde, A.O., Jeyakumar, L.G., Zhao, Y., 2011, Constructed Wetlands using Aluminum-Based Drinking Water Treatment Sludge as P Removing Substrate: Should Aluminum Release be a Concern?, J. Environ. Monit. Vol. 13, 1775-1783.
  • [28] Heil, D.M., Barbarick, K.A., 1989, Water Treatment Sludge İnfluence on the Growth of Sorghum-Sudangrass, J. Environ. Qual. Vol. 18, 292-298.
  • [29] Viraraghavan, T., Ionescu, M., 2002, Land Application of Phosphorus-Laden Sludge: A Feasibility Analysis, J. Environ. Manage. Vol. 64, 171-177
  • [30] Hsieh, H., Raghu, D., Tian, P., 2006, Leaching Studies on a Model Monofill of Water Treatment Plant Residuals, Environ. Eng. Sci., Vol. 23, 230-238.
  • [31] Environmental Protection Agency, 2000, Landfill Manuals, Landfill Site Design, Wexford: EPA.
  • [32] O’Kelly, B.C., Quille. M.E., 2009, Compressibility and Consolidation of Water Treatment Residues, Proc. Inst. Civ. Eng. Waste Resour. Manag., Vol. 162, 85-97.
  • [33] Vandermeyden, C., Cornwell, D.A., 1998, Nonmechanical Dewatering of Water Plant Residuals, AWWA Research Foundation and American Water Works Association.
  • [34] Roque, A.J., Carvalho, M., 2006, Possibility of Using the Drinking Water Sludge as Geotechnical Material, In: Telford, T. (Ed.), Proceedings of the 5th International Congress on Environmental Geotechnics, ASCE-American Society of Civil Engineers, London, 1535-1542.
  • [35] Montalvan, E.L.T., Boscov, M.E.G., 2016, Geotechnical Characterization of a Soil-Water Treatment Sludge Mixture, In: Geo-Chicago, ASCE, Chicago, 418-427.
  • [36] Huang, C., Pan, J.R., Sun, K.D., Liaw, C.T., 2001, Reuse of Water Treatment Plant Sludge and Dam Sediment in Brick Making, Water Sci. Technol., Vol. 44(10), 273-277.
  • [37] Huang, C.H., Wang, S.Y., 2013, Application of Water Treatment Sludge in the Manufacturing of Lightweight Aggregate, Constr. Build. Mater., Vol. 43, 174-183.
  • [38] Sales, A., De Souza, F.R., Almeida, F.R., 2011, Mechanical Properties of Concrete Produced with a Composite of Water Treatment Sludge and Sawdust, Constr. Build. Mater., Vol. 25(6), 2793-2798.
  • [39] Zamora, R.M.R., Alfaro, O.C., Cabirol, N., Ayala, F.E., Moreno, A.D., 2008, Valorization of Drinking Water Treatment Sludges as Raw Materials to Produce Concrete and Mortar, Am. J. Environ. Sci., Vol. 4(3), 223-228.
  • [40] Rodríguez, N.H., Ramírez, S.M., Varela, M.T.B., Guillem, M., Puig, J., Larrotcha, E., Flores, J., 2010, Re-use of Drinking Water Treatment Plant (DWTP) Sludge: Characterization and Technological Behaviour of Cement Mortars with Atomized Sludge Additions, Cem. Concr. Res., Vol. 40, 778-786.
  • [41] Sales, A., De Souza, F.R., 2009, Concretes and Mortars Recycled with Water Treatment Sludge and Construction and Demolition Rubble, Constr. Build. Mater., Vol. 23, 2362-2370.
  • [42] Kaosol, T., 2010, Reuse Water Treatment Sludge for Hollow Concrete Block Manufacture, Energy Res. J., Vol. 1(2), 131-134.
  • [43] Nowasell, Q.C., Kevern, J.T., 2015, Using Drinking Water Treatment Waste as a Lowcost Internal Curing Agent for Concrete, ACI Mater. J., Vol. 112(1), 69-78.
  • [44] Yen, C.L., Tseng, D.H., Lin, T.-T., 2011, Characterization of Eco-Cement Paste Produced from Waste Sludges, Chemosphere, Vol. 84, 220-226.
  • [45] Chen, H., Mab, X., Dai, H., 2010, Reuse of Water Purification Sludge as Raw Material in Cement Production, Cem. Concr. Compos., Vol. 32, 436-439.
  • [46] Pan, J.R., Huang, C., Lin, S., 2004, Reuse of Fresh Water Sludge in Cement Making, Water Sci. Technol., Vol. 50(9), 183-188.
  • [47] El-Didamony, H., Khalil, K.A., Heikal, M., 2014, Physico-Chemical and Surface Characteristics of Some Granulated Slag-Fired Drinking Water Sludge Composite Cement Pastes, HBRC J., Vol. 10, 73-81.
  • [48] Carvalho, M., Antas, A., 2005, Drinking Water Sludge as a Resource, In: Proceedings of IWA Specialized Conference on Management of Residues Emanating from Water and Wastewater Treatment, Johannesburg, South Africa.
  • [49] Goldbold, P., Lewin, K., Graham, A., Barker, P., 2003, The Potential Reuse of Water Utility Products as Secondary Commercial Materials, In: WRC Technical Report Series. No. UC 6081, Project Contract No. 12420-0.
  • [50] Huang, C., Pan, J.R., Liu, Y., 2005, Mixing Water Treatment Residual with Excavation Waste Soil in Brick and Artificial Aggregate Making, J. Environ. Eng., Vol. 131, 272-277.
  • [51] Anderson, M., Biggs, A., Winters, C., 2003, Use of Two Blended Water Industry Byproduct Wastes as a Composite Substitute for Traditional Raw Materials Used in Clay Brick Manufacture. In: Proceedings of the International Symposium on Recycling and Reuse of Waste Materials, Dundee, Scotland, UK.
  • [52] Chiang, K.Y., Chou, P.H., Hua, C. R., Chien, K. L., Cheeseman, C., 2009, Lightweight Bricks Manufactured from Water Treatment Sludge and Rice Husks, J. Hazard. Mater., Vol. 171, 76-82.
  • [53] Elangovan, C., Subramanian, K., 2011, Reuse of Alum Sludge in Clay Brick Manufacturing, Water Sci. Technol., Water Supply, Vol. 11(3), 333-341.
  • [54] Hegazy, B.D., Fouad, H.A., Hassanain, A.M., 2012, Brick Manufacturing from Water Treatment Sludge and Rice Husk Ash, Aust. J. Basic Appl. Sci., Vol. 6(3), 453-461.
  • [55] Horth, H., Gendebien, A., Agg, R., Cartwright, N., 1994, Treatment and Disposal of Waterworks Sludge in Selected European Countries, In: Foundation for Water Research Technical Reports No. FR 0428.
  • [56] Teixeira, S.R., Santos, G.T.A., Souza, A.E., Alessio, P., Souza, S.A., Souza, N.R., 2011, The Effect of Incorporation of a Brazilian WTPs Sludge on the Properties of Ceramic Materials, Appl. Clay Sci., Vol. 53, 561-565.
  • [57] Monteiro, S.N., Alexandre, J., Margem, J.I., S_anchez, R., Vieira, C.M.F., 2008, Incorporation of Sludge Waste from Water Treatment Plant into Red Ceramic, Constr. Build. Mater., Vol. 22, 1281-1287.
  • [58] Vicenzi, J., Bernardes, A., Moura, B., Bergmann, C.P., 2005, Evaluation of Alum Sludge as Raw Material for Ceramic Products, J. Ind. Ceram., Vol. 25(1), 7-16.
  • [59] Titshall, L.W., Hughes, J.C., 2005, Characterization of Some South African Water Treatment Residues and Implications for Land Application, J. Water SA, Vol. 31(3), 299-307.
  • [60] Russell, G.A., 1975, From Lagooning to Farm Land Application: The Next Step in Lime Sludge Disposal, J. Am. Water Works Assoc., Vol. 67, 585-588.
  • [61] Ippolito, J.A., Barabrick, K.A., Redente, E.F., 1999, Co-application Effects of Water Treatment Residuals and Biosolids on Two Range Grasses, J. Environ. Qual., Vol. 28, 1644-1650.
  • [62] Lombi, E., Stevens, D.P., McLaughlin, M.J., 2010, Effect of Water Treatment Residuals on Soil Phosphorus, Copper and Aluminum Availability and Toxicity, Environ. Pollut., Vol. 158, 2110-2116.
  • [63] Moodley, M., Johnston, M.A., Hughes, J.C., Titshall, L.W., 2004, Effects of a Water Treatment Residue, Lime, Gypsum, and Polyacrylamide on the Water Retention and Hydraulic Conductivity of Two Contrasting Soils under Field Conditions in KwaZulu-Natal, South Africa, Aust. J. Soil Res., Vol. 42(3), 273-282.
  • [64] Dayton, E.A., Basta, N.T., 2001, Characterization of Drinking Water Treatment Residuals for Use as a Soil Substitute, Water Environ. Res., Vol. 73(1), 52-57.
  • [65] Lin, S.D., Green, C.D., 1987, A Study of Wastes from the Centralia Water Treatment Plant and Their Impact on Crooked Creek, Illinois State Water Survey Contract Report 419, 115–120.
  • [66] Owen, P.G., 2002, Water-Treatment Work’s Sludge Management, J. Ciwem, Vol. 16, 282-285.
  • [67] Kim, G.J., Lee, S.S., Moon, H.S., Kang, I.M., 2002, Land Application of Alum Sludge from Water Purification Plant to Acid Mineral Soil Treated with Acidic Water, Soil Sci. Plant Nutr., Vol. 48(1), 15-22.
  • [68] Wang, F., Couillard, D., Auclair, J.C., Campbell, P.G.C., 1998, Effects of Alum-Treated Wastewater Sludge on Barley Growth, Water Air Soil Pollut., Vol. 108(1-2), 33-49.
  • [69] Hastings, E., Dawson, J.J.C., 2012, The Use of Alum Sludge and Sewage Sludge as a Soil Improver on Barra - Further Response, CREW Publication, Call Down Project (CD2012/16).
  • [70] Stevens, D.P., Lombi, R., McLaughlin, M., Tomczak, B., Fiebigner, C., 2003, Risk Assessment for Water Treatment Residuals, Consultancy Report for SA Water and WA Water, CSIRO Land and Water, Glen Osmond, South Australia.
  • [71] Rensburg, V.L., Morgenthal, T.L., 2003, Evaluation of Water Treatment Sludge for Ameliorating Acid Mine Waste, J. Environ. Qual., Vol. 32, 1658-1668.
  • [72] Moodley, M., Hughes, J.C., 2005, The effects of a Polyacrylamide-Derived Water Treatment Residue on the Hydraulic Conductivity, Water Retention and Evaporation of Four Contrasting South African Soils and Implications for Land Disposal, In: Proceedings of IWA Specialized Conference on Management of Residues Emanating from Water and Wastewater Treatment, Johannesburg, South Africa.
  • [73] Elliot and Singer (1988) Elliot, H.A., Singer, L.M., 1988. Effect of water treatment sludge on growth and elemental composition of tomato shoots. Commun. Soil Sci. Plant Anal. 19 (3), 345–354.
  • [74] Elliott, H.A., Dempsey, B.A., 1991, Agronomic Effects of Land Application of Water Treatment Sludge, J. Am. Water Works Assoc., Vol. 83(4), 126-131.
  • [75] Babatunde, A.O., Yang, Y., Zhao, Y.Q., 2005, Towards the Development of a Novel Wastewater Treatment System Incorporating Drinking Water Residual: Preliminary Results. In: Proceedings of the 10th European Conference on Biowastes and Biosolids Management, Yorkshire, UK.
  • [76] Zhao, Y.Q., Babatunde, A.O., Hu, Y.S., Kumar, J.L.G., Zhao, X.H., 2011, Pilot Field-Scale Demonstration of a Novel Alum Sludge-Based Constructed Wetland System for Enhanced Wastewater Treatment, Process Biochem., Vol. 46(1), 278-283.
  • [77] Zhao, Y.Q., and Babatunde, A.O., 2006, Integrating “Wastes” into Treatment Processes: Can Dewatered Alum Sludge Be Used as Substrate in Constructed Reed Bed? 10th IWA Wetland Conference, September, Portugal,.
  • [78] Leader, J.W., Reddy, K.R., and Wilkie, A.C. 2005, Optimization of Low-Cost Phosphorus Removal from Wastewater using Co-Treatments with Constructed Wetlands, Water Sci. Technol., 51(9), 283-290.
  • [79] Zhao, Y.Q., Zhao, X.H., Babatunde, A.O., 2009, Use of Dewatered Alum Sludge as Main Substrate in Treatment Reed Bed Receiving Agricultural Wastewater: Long-Term Trial, Bioresour. Technol., Vol. 100, 644648.
  • [80] Park, W., 2009, Integrated Constructed Wetland Systems Employing Alum Sludge and Oystershells as Filter Media for P Removal, Ecol. Eng., Vol. 35, 1275-1282.
  • [81] Wu, S., Austin, D., Liu, L., Dong, R., 2011, Performance of İntegrated Household Constructed Wetland for Domestic Wastewater Treatment in Rural Areas, Ecol. Eng., Vol. 37, 948-954.
  • [82] Babatunde, A.O., Zhao, Y.Q., Doyle, R.J., Rackard, S.M., Kumar, J.L.G., Hu, Y.S., 2011, Performance Evaluation and Prediction for a Pilot Two-Stage On-Site Constructed Wetland System Employing Dewatered Alum Sludge as Main Substrate, Bioresour. Technol., Vol. 102(10), 5645-5652.
  • [83] Zhao, X.H., Zhao, Y.Q., 2009, Investigation of Phosphorus Desorption from P Saturated Alum Sludge used as a Substrate in Constructed Wetland, Sep. Purif. Technol., Vol. 66, 71-75.
  • [84] Hu, Y., Zhao, Y., Zhao, X., Kumar, J.L., 2010, High Rate Nitrogen Removal in an Alum Sludge-Based İntermittent Aeration Constructed Wetland, Environ. Sci. Technol., Vol. 46(8), 4583-4590.
  • [85] Yang, Y., Zhao, Y.Q., Wang, S.P., Guo, X.C., Ren, Y.X., Wang, L., Wang, X.C.A., 2011, Promising Approach of Reject Water Treatment using a tidal Flow Constructed Wetland System Employing Alum Sludge as Main Substrate, Water Sci. Technol., Vol. 63(10), 2367-2373.
  • [86] Caniani, D., Masi, S., Mancini, I.M., Trulli, E., 2013, Innovative Reuse of Drinking Water Sludge in Geo-Environmental Applications, Waste Manag., Vol. 33, 1461-1468.
  • [87] Raghu, D., Hsieh, H., 1985, Feasibility Study of the Use of Lime Sludge as a Landfill Liner, J. Indian Water Works Assoc., Vol. 17(2), 193-199.

The Beneficial Use of Water Treatment Sludges in Geotechnical Engineering

Yıl 2019, Cilt: 2 Sayı: 1, 11 - 19, 02.01.2019

Öz



During
the treatment of drinking water, sludge with high water content (usually more
than 95% by weight) occurs. This sludge, which usually results from the
coagulation process, is called alum or iron sludge, depending on the type of
the coagulant used. Since the the amount of the solid matter in the sludge is
low and the water content is high, the produced water treatment sludge
constitutes large volumes, and therefore the treatment and disposal of water
treatment sludges in the treatment plants cause problems. The beneficial use of
drinking water treatment sludge in various fields is of great importance as it
will eliminate the problems related to the disposal of these wastes. In this
study, information about the general properties of drinking water treatment
sludges were introduced, and the beneficial uses of these sludges in
geotechnical applications were investigated.



Kaynakça

  • [1] Sun, Y., Fan, W., Zheng, H., Zhang, Y., Li, F., Chen, W., 2015, Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge, PLoS ONE, Vol. 10(6),1-16.
  • [2] Ahmad, T., Ahmad, K., Alam, M., 2016, Sustainable Management of Water Treatment Sludge Through 3‘R’ Concept, J. Cleaner Prod., Vol. 124, 1–13.
  • [3] Mortula, M.M., Gagnon, G.A., 2007, Alum Residuals as a Low Technology for Phosphorus Removal from Aquaculture Processing Water, Aquacultural Eng., Vol. 36, 233–238.
  • [4] Babatunde, A.O., Zhao, Y.Q., 2007, Constructive Approaches Toward Water Treatment Works Sludge Management: An International Review of Beneficial Reuses, Crit. Rev. Environ. Sci. Technol. Vol. 37, 129-164.
  • [5] Dharmappa HB, Hasia A, Hagare P (1997) Water treatment plant residuals management. Water Sci Technol 35(8):45–56
  • [6] İstanbul Su ve Kanalizasyon İdaresi Faaliyet Raporu, 2017, web sayfası: http://www.iski.gov.tr/web/assets/SayfalarDocs/faaliyetraporlari/faaliyetraporu2008/2017_Faaliyet_Raporu..pdf, erişim tarihi: 05.01.2019.
  • [7] Tchobanoglous, G., Burton, F.L., Stensel, H.D., 2003, Wastewater Engineering: Treatment and Reuse, 4th ed., Metcalf & Eddy Inc., New York, NY, McGraw-Hill.
  • [8] Lin, S., Evans, R.L., Schnepper, D., Hill, T., 1984, Evaluation of Wastes from the East St. Louis Water Treatment Plant and Their İmpact on the Mississippi River, Illinois State Water Survey Div., Champaign—National Technical Information Service-NTIS, ISWS/CIR- 160/84.
  • [9] M.C. Wang, T. Tseng, 1993, Permeability Behavior of a Water Treatment Sludge, J. Geotech. Eng., Vol. 119, 1672-1677.
  • [10] B. O’Kelly, 2010, Landfill Disposal of alum Water Treatment Residues, some Pertinent Geoengineering Properties, J. Res. Sci. Technol., Vol. 7, 95-113.
  • [11] CPCB 2011 Status of water treatment plants in India (New Delhi: Central Pollution Control Board
  • [12] Razali, M., Zhao, Y.Q., Bruen, M., 2007, Effectiveness of a Drinking-Water Treatment Sludge in Removing Different Phosphorus Species from Aqueous Solution, Separ. Purif. Technol., Vol. 55, 300-306.
  • [13] Basim, S.C., 1999, Physical and Geotechnical Characterization of Water Treatment Plant Residuals, New Jersey Institute of Technology.
  • [14] Hsieh, H.N., Raghu. D., 1997, Criteria development for water Treatment Plant Residual Monofill, AWWA - American Water Works Association.
  • [15] Xia, Z., 1994, Geotechnical Characterization of Water Treatment Plant Residuals, New Jersey Institute of Technology.
  • [16] O’Kelly, B.C., Quille, M.E., 2009, Shear Strength Properties of Water Treatment Residues, Geotech. Eng., Vol. 163, 23-35.
  • [17] O’Kelly, B.C., 2008, Geotechnical properties of a Municipal Water Treatment Sludge İncorporating a Coagulant, Can. Geotech. J., Vol. 45, 715-725.
  • [18] Balkaya, M., Evaluation of the Geotechnical Properties of Alum Sludge, Zeolite, and Their Mixtures for Beneficial Usage, Environ. Prog. Sustain., Vol. 34(4), 1028-1037.
  • [19] Raghu, D., Hsieh, H.N., Neilan, T., Yih, C.T., 1987, Water treatment Plant Sludge as Landfill Liner, In R.D. Woods (Ed.), Geotechnical Practice for Waste Disposal’87, New York: American Society of Civil Engineers, 744–758.
  • [20] Wang, M.C., Hull, J.Q., Jao, M., Dempsey, B.A., Cornwell, D.A., 1992, Engineering Behavior of Water Treatment Sludge, J. Environ. Eng., Vol. 118(6), 848-864.
  • [21] Wang, M. C , Hull, J. Q., Jao, M., 1991, Stabilization of Water Treatment Plant Sludge for Possible Utilization as Embankment Material, Transp. Res. Rec., Vol. 1345, 36-43.
  • [22] Raghu, D., Hsieh, H.N., 1986, Material Properties of Water Treatment Plant Sludges, Int. J. Civ. Eng. Pract. Des. Eng., 5(5): 927–941.
  • [23] Knocke, W. R., and Wakeland, D. L., 1983, Fundamental Characteristics of Water Treatment Plant Sludges, J. AWWA, Vol. 75(10), 516-523.
  • [24] UN-Water, 2015, Wastewater management: a UN-Water Analytical Brief, web sayfası: http://www.unwater.org/publications/wastewater-management-un-water-analytical-brief/, erişim tarihi: 15/11/2016.
  • [25] United Nations World Water Assessment Programe, WWAP, 2012, The Nations World Water Development Report 4. Managing Water under Uncertainty and Risk, UNESCO, Paris, web sayfası: http://www.unesco.org/new/fileadmin/MULTIMEDIA/HQ/SC/pdf/WWDR4%20Volume%201-Managing%20Water%20under%20Uncertainty%20and%20Risk.pdf, erişim tarihi: 20/03/2015.
  • [26] Qi, L., Cheng, R., Wang, H., Zheng, X., Zhang, G., Li, G., 2011, Recycle of Alum Sludge with PAC (RASP) for Drinking Water Treatment, Desalin. Water Treat., Vol. 25, 170-175.
  • [27] Babatunde, A.O., Jeyakumar, L.G., Zhao, Y., 2011, Constructed Wetlands using Aluminum-Based Drinking Water Treatment Sludge as P Removing Substrate: Should Aluminum Release be a Concern?, J. Environ. Monit. Vol. 13, 1775-1783.
  • [28] Heil, D.M., Barbarick, K.A., 1989, Water Treatment Sludge İnfluence on the Growth of Sorghum-Sudangrass, J. Environ. Qual. Vol. 18, 292-298.
  • [29] Viraraghavan, T., Ionescu, M., 2002, Land Application of Phosphorus-Laden Sludge: A Feasibility Analysis, J. Environ. Manage. Vol. 64, 171-177
  • [30] Hsieh, H., Raghu, D., Tian, P., 2006, Leaching Studies on a Model Monofill of Water Treatment Plant Residuals, Environ. Eng. Sci., Vol. 23, 230-238.
  • [31] Environmental Protection Agency, 2000, Landfill Manuals, Landfill Site Design, Wexford: EPA.
  • [32] O’Kelly, B.C., Quille. M.E., 2009, Compressibility and Consolidation of Water Treatment Residues, Proc. Inst. Civ. Eng. Waste Resour. Manag., Vol. 162, 85-97.
  • [33] Vandermeyden, C., Cornwell, D.A., 1998, Nonmechanical Dewatering of Water Plant Residuals, AWWA Research Foundation and American Water Works Association.
  • [34] Roque, A.J., Carvalho, M., 2006, Possibility of Using the Drinking Water Sludge as Geotechnical Material, In: Telford, T. (Ed.), Proceedings of the 5th International Congress on Environmental Geotechnics, ASCE-American Society of Civil Engineers, London, 1535-1542.
  • [35] Montalvan, E.L.T., Boscov, M.E.G., 2016, Geotechnical Characterization of a Soil-Water Treatment Sludge Mixture, In: Geo-Chicago, ASCE, Chicago, 418-427.
  • [36] Huang, C., Pan, J.R., Sun, K.D., Liaw, C.T., 2001, Reuse of Water Treatment Plant Sludge and Dam Sediment in Brick Making, Water Sci. Technol., Vol. 44(10), 273-277.
  • [37] Huang, C.H., Wang, S.Y., 2013, Application of Water Treatment Sludge in the Manufacturing of Lightweight Aggregate, Constr. Build. Mater., Vol. 43, 174-183.
  • [38] Sales, A., De Souza, F.R., Almeida, F.R., 2011, Mechanical Properties of Concrete Produced with a Composite of Water Treatment Sludge and Sawdust, Constr. Build. Mater., Vol. 25(6), 2793-2798.
  • [39] Zamora, R.M.R., Alfaro, O.C., Cabirol, N., Ayala, F.E., Moreno, A.D., 2008, Valorization of Drinking Water Treatment Sludges as Raw Materials to Produce Concrete and Mortar, Am. J. Environ. Sci., Vol. 4(3), 223-228.
  • [40] Rodríguez, N.H., Ramírez, S.M., Varela, M.T.B., Guillem, M., Puig, J., Larrotcha, E., Flores, J., 2010, Re-use of Drinking Water Treatment Plant (DWTP) Sludge: Characterization and Technological Behaviour of Cement Mortars with Atomized Sludge Additions, Cem. Concr. Res., Vol. 40, 778-786.
  • [41] Sales, A., De Souza, F.R., 2009, Concretes and Mortars Recycled with Water Treatment Sludge and Construction and Demolition Rubble, Constr. Build. Mater., Vol. 23, 2362-2370.
  • [42] Kaosol, T., 2010, Reuse Water Treatment Sludge for Hollow Concrete Block Manufacture, Energy Res. J., Vol. 1(2), 131-134.
  • [43] Nowasell, Q.C., Kevern, J.T., 2015, Using Drinking Water Treatment Waste as a Lowcost Internal Curing Agent for Concrete, ACI Mater. J., Vol. 112(1), 69-78.
  • [44] Yen, C.L., Tseng, D.H., Lin, T.-T., 2011, Characterization of Eco-Cement Paste Produced from Waste Sludges, Chemosphere, Vol. 84, 220-226.
  • [45] Chen, H., Mab, X., Dai, H., 2010, Reuse of Water Purification Sludge as Raw Material in Cement Production, Cem. Concr. Compos., Vol. 32, 436-439.
  • [46] Pan, J.R., Huang, C., Lin, S., 2004, Reuse of Fresh Water Sludge in Cement Making, Water Sci. Technol., Vol. 50(9), 183-188.
  • [47] El-Didamony, H., Khalil, K.A., Heikal, M., 2014, Physico-Chemical and Surface Characteristics of Some Granulated Slag-Fired Drinking Water Sludge Composite Cement Pastes, HBRC J., Vol. 10, 73-81.
  • [48] Carvalho, M., Antas, A., 2005, Drinking Water Sludge as a Resource, In: Proceedings of IWA Specialized Conference on Management of Residues Emanating from Water and Wastewater Treatment, Johannesburg, South Africa.
  • [49] Goldbold, P., Lewin, K., Graham, A., Barker, P., 2003, The Potential Reuse of Water Utility Products as Secondary Commercial Materials, In: WRC Technical Report Series. No. UC 6081, Project Contract No. 12420-0.
  • [50] Huang, C., Pan, J.R., Liu, Y., 2005, Mixing Water Treatment Residual with Excavation Waste Soil in Brick and Artificial Aggregate Making, J. Environ. Eng., Vol. 131, 272-277.
  • [51] Anderson, M., Biggs, A., Winters, C., 2003, Use of Two Blended Water Industry Byproduct Wastes as a Composite Substitute for Traditional Raw Materials Used in Clay Brick Manufacture. In: Proceedings of the International Symposium on Recycling and Reuse of Waste Materials, Dundee, Scotland, UK.
  • [52] Chiang, K.Y., Chou, P.H., Hua, C. R., Chien, K. L., Cheeseman, C., 2009, Lightweight Bricks Manufactured from Water Treatment Sludge and Rice Husks, J. Hazard. Mater., Vol. 171, 76-82.
  • [53] Elangovan, C., Subramanian, K., 2011, Reuse of Alum Sludge in Clay Brick Manufacturing, Water Sci. Technol., Water Supply, Vol. 11(3), 333-341.
  • [54] Hegazy, B.D., Fouad, H.A., Hassanain, A.M., 2012, Brick Manufacturing from Water Treatment Sludge and Rice Husk Ash, Aust. J. Basic Appl. Sci., Vol. 6(3), 453-461.
  • [55] Horth, H., Gendebien, A., Agg, R., Cartwright, N., 1994, Treatment and Disposal of Waterworks Sludge in Selected European Countries, In: Foundation for Water Research Technical Reports No. FR 0428.
  • [56] Teixeira, S.R., Santos, G.T.A., Souza, A.E., Alessio, P., Souza, S.A., Souza, N.R., 2011, The Effect of Incorporation of a Brazilian WTPs Sludge on the Properties of Ceramic Materials, Appl. Clay Sci., Vol. 53, 561-565.
  • [57] Monteiro, S.N., Alexandre, J., Margem, J.I., S_anchez, R., Vieira, C.M.F., 2008, Incorporation of Sludge Waste from Water Treatment Plant into Red Ceramic, Constr. Build. Mater., Vol. 22, 1281-1287.
  • [58] Vicenzi, J., Bernardes, A., Moura, B., Bergmann, C.P., 2005, Evaluation of Alum Sludge as Raw Material for Ceramic Products, J. Ind. Ceram., Vol. 25(1), 7-16.
  • [59] Titshall, L.W., Hughes, J.C., 2005, Characterization of Some South African Water Treatment Residues and Implications for Land Application, J. Water SA, Vol. 31(3), 299-307.
  • [60] Russell, G.A., 1975, From Lagooning to Farm Land Application: The Next Step in Lime Sludge Disposal, J. Am. Water Works Assoc., Vol. 67, 585-588.
  • [61] Ippolito, J.A., Barabrick, K.A., Redente, E.F., 1999, Co-application Effects of Water Treatment Residuals and Biosolids on Two Range Grasses, J. Environ. Qual., Vol. 28, 1644-1650.
  • [62] Lombi, E., Stevens, D.P., McLaughlin, M.J., 2010, Effect of Water Treatment Residuals on Soil Phosphorus, Copper and Aluminum Availability and Toxicity, Environ. Pollut., Vol. 158, 2110-2116.
  • [63] Moodley, M., Johnston, M.A., Hughes, J.C., Titshall, L.W., 2004, Effects of a Water Treatment Residue, Lime, Gypsum, and Polyacrylamide on the Water Retention and Hydraulic Conductivity of Two Contrasting Soils under Field Conditions in KwaZulu-Natal, South Africa, Aust. J. Soil Res., Vol. 42(3), 273-282.
  • [64] Dayton, E.A., Basta, N.T., 2001, Characterization of Drinking Water Treatment Residuals for Use as a Soil Substitute, Water Environ. Res., Vol. 73(1), 52-57.
  • [65] Lin, S.D., Green, C.D., 1987, A Study of Wastes from the Centralia Water Treatment Plant and Their Impact on Crooked Creek, Illinois State Water Survey Contract Report 419, 115–120.
  • [66] Owen, P.G., 2002, Water-Treatment Work’s Sludge Management, J. Ciwem, Vol. 16, 282-285.
  • [67] Kim, G.J., Lee, S.S., Moon, H.S., Kang, I.M., 2002, Land Application of Alum Sludge from Water Purification Plant to Acid Mineral Soil Treated with Acidic Water, Soil Sci. Plant Nutr., Vol. 48(1), 15-22.
  • [68] Wang, F., Couillard, D., Auclair, J.C., Campbell, P.G.C., 1998, Effects of Alum-Treated Wastewater Sludge on Barley Growth, Water Air Soil Pollut., Vol. 108(1-2), 33-49.
  • [69] Hastings, E., Dawson, J.J.C., 2012, The Use of Alum Sludge and Sewage Sludge as a Soil Improver on Barra - Further Response, CREW Publication, Call Down Project (CD2012/16).
  • [70] Stevens, D.P., Lombi, R., McLaughlin, M., Tomczak, B., Fiebigner, C., 2003, Risk Assessment for Water Treatment Residuals, Consultancy Report for SA Water and WA Water, CSIRO Land and Water, Glen Osmond, South Australia.
  • [71] Rensburg, V.L., Morgenthal, T.L., 2003, Evaluation of Water Treatment Sludge for Ameliorating Acid Mine Waste, J. Environ. Qual., Vol. 32, 1658-1668.
  • [72] Moodley, M., Hughes, J.C., 2005, The effects of a Polyacrylamide-Derived Water Treatment Residue on the Hydraulic Conductivity, Water Retention and Evaporation of Four Contrasting South African Soils and Implications for Land Disposal, In: Proceedings of IWA Specialized Conference on Management of Residues Emanating from Water and Wastewater Treatment, Johannesburg, South Africa.
  • [73] Elliot and Singer (1988) Elliot, H.A., Singer, L.M., 1988. Effect of water treatment sludge on growth and elemental composition of tomato shoots. Commun. Soil Sci. Plant Anal. 19 (3), 345–354.
  • [74] Elliott, H.A., Dempsey, B.A., 1991, Agronomic Effects of Land Application of Water Treatment Sludge, J. Am. Water Works Assoc., Vol. 83(4), 126-131.
  • [75] Babatunde, A.O., Yang, Y., Zhao, Y.Q., 2005, Towards the Development of a Novel Wastewater Treatment System Incorporating Drinking Water Residual: Preliminary Results. In: Proceedings of the 10th European Conference on Biowastes and Biosolids Management, Yorkshire, UK.
  • [76] Zhao, Y.Q., Babatunde, A.O., Hu, Y.S., Kumar, J.L.G., Zhao, X.H., 2011, Pilot Field-Scale Demonstration of a Novel Alum Sludge-Based Constructed Wetland System for Enhanced Wastewater Treatment, Process Biochem., Vol. 46(1), 278-283.
  • [77] Zhao, Y.Q., and Babatunde, A.O., 2006, Integrating “Wastes” into Treatment Processes: Can Dewatered Alum Sludge Be Used as Substrate in Constructed Reed Bed? 10th IWA Wetland Conference, September, Portugal,.
  • [78] Leader, J.W., Reddy, K.R., and Wilkie, A.C. 2005, Optimization of Low-Cost Phosphorus Removal from Wastewater using Co-Treatments with Constructed Wetlands, Water Sci. Technol., 51(9), 283-290.
  • [79] Zhao, Y.Q., Zhao, X.H., Babatunde, A.O., 2009, Use of Dewatered Alum Sludge as Main Substrate in Treatment Reed Bed Receiving Agricultural Wastewater: Long-Term Trial, Bioresour. Technol., Vol. 100, 644648.
  • [80] Park, W., 2009, Integrated Constructed Wetland Systems Employing Alum Sludge and Oystershells as Filter Media for P Removal, Ecol. Eng., Vol. 35, 1275-1282.
  • [81] Wu, S., Austin, D., Liu, L., Dong, R., 2011, Performance of İntegrated Household Constructed Wetland for Domestic Wastewater Treatment in Rural Areas, Ecol. Eng., Vol. 37, 948-954.
  • [82] Babatunde, A.O., Zhao, Y.Q., Doyle, R.J., Rackard, S.M., Kumar, J.L.G., Hu, Y.S., 2011, Performance Evaluation and Prediction for a Pilot Two-Stage On-Site Constructed Wetland System Employing Dewatered Alum Sludge as Main Substrate, Bioresour. Technol., Vol. 102(10), 5645-5652.
  • [83] Zhao, X.H., Zhao, Y.Q., 2009, Investigation of Phosphorus Desorption from P Saturated Alum Sludge used as a Substrate in Constructed Wetland, Sep. Purif. Technol., Vol. 66, 71-75.
  • [84] Hu, Y., Zhao, Y., Zhao, X., Kumar, J.L., 2010, High Rate Nitrogen Removal in an Alum Sludge-Based İntermittent Aeration Constructed Wetland, Environ. Sci. Technol., Vol. 46(8), 4583-4590.
  • [85] Yang, Y., Zhao, Y.Q., Wang, S.P., Guo, X.C., Ren, Y.X., Wang, L., Wang, X.C.A., 2011, Promising Approach of Reject Water Treatment using a tidal Flow Constructed Wetland System Employing Alum Sludge as Main Substrate, Water Sci. Technol., Vol. 63(10), 2367-2373.
  • [86] Caniani, D., Masi, S., Mancini, I.M., Trulli, E., 2013, Innovative Reuse of Drinking Water Sludge in Geo-Environmental Applications, Waste Manag., Vol. 33, 1461-1468.
  • [87] Raghu, D., Hsieh, H., 1985, Feasibility Study of the Use of Lime Sludge as a Landfill Liner, J. Indian Water Works Assoc., Vol. 17(2), 193-199.
Toplam 87 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Bilimleri
Bölüm Makaleler
Yazarlar

Müge Balkaya

Yayımlanma Tarihi 2 Ocak 2019
Gönderilme Tarihi 2 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 1

Kaynak Göster

APA Balkaya, M. (2019). İçme Suyu Arıtma Çamurlarının Geoteknik Özellikleri ve Faydalı Kullanım Alanları. Ulusal Çevre Bilimleri Araştırma Dergisi, 2(1), 11-19.
AMA Balkaya M. İçme Suyu Arıtma Çamurlarının Geoteknik Özellikleri ve Faydalı Kullanım Alanları. UCBAD. Ocak 2019;2(1):11-19.
Chicago Balkaya, Müge. “İçme Suyu Arıtma Çamurlarının Geoteknik Özellikleri Ve Faydalı Kullanım Alanları”. Ulusal Çevre Bilimleri Araştırma Dergisi 2, sy. 1 (Ocak 2019): 11-19.
EndNote Balkaya M (01 Ocak 2019) İçme Suyu Arıtma Çamurlarının Geoteknik Özellikleri ve Faydalı Kullanım Alanları. Ulusal Çevre Bilimleri Araştırma Dergisi 2 1 11–19.
IEEE M. Balkaya, “İçme Suyu Arıtma Çamurlarının Geoteknik Özellikleri ve Faydalı Kullanım Alanları”, UCBAD, c. 2, sy. 1, ss. 11–19, 2019.
ISNAD Balkaya, Müge. “İçme Suyu Arıtma Çamurlarının Geoteknik Özellikleri Ve Faydalı Kullanım Alanları”. Ulusal Çevre Bilimleri Araştırma Dergisi 2/1 (Ocak 2019), 11-19.
JAMA Balkaya M. İçme Suyu Arıtma Çamurlarının Geoteknik Özellikleri ve Faydalı Kullanım Alanları. UCBAD. 2019;2:11–19.
MLA Balkaya, Müge. “İçme Suyu Arıtma Çamurlarının Geoteknik Özellikleri Ve Faydalı Kullanım Alanları”. Ulusal Çevre Bilimleri Araştırma Dergisi, c. 2, sy. 1, 2019, ss. 11-19.
Vancouver Balkaya M. İçme Suyu Arıtma Çamurlarının Geoteknik Özellikleri ve Faydalı Kullanım Alanları. UCBAD. 2019;2(1):11-9.
 ❤ UCBAD